
Multiplier-Free Feedforward Networks
Altaf H. Khan

174 Eden Avenue, Defence Road, Lahore, Pakistan (altaf@altafkhan.com)

Abstract - A feedforward network is proposed which
lends itself to cost-effective implementations in digi-
tal hardware and has a fast forward-pass capability.
It differs from the conventional model in restricting
its synapses to the set {−1, 0, 1} while allowing un-
restricted offsets. Simulation results on the ‘onset of
diabetes’ data set and a handwritten numeral recog-
nition database indicate that the new network, de-
spite having strong constraints on its synapses, has a
generalization performance similar to that of its con-
ventional counterpart.

I. Hardware Implementation

Ease of hardware implementation is the key feature that
distinguishes the feedforward network from competing
statistical and machine learning techniques. The most
distinctive characteristic of the graph of that network
is its homogeneous modularity. Because of its modular
architecture, the natural implementation of this network
is a parallel one, whether in software or in hardware.

The digital, electronic implementation holds consider-
able interest – the modular architecture of the feedfor-
ward network is well matched with VLSI design tools
and therefore lends itself to cost-effective mass produc-
tion. There is, however, a hitch which makes this union
between the feedforward network and digital hardware
far from ideal: the network parameters (weights) and its
internal functions (dot product, activation functions) are
inherently analog. It is too much to expect a network
trained in an analog (or high-resolution digital) envi-
ronment to behave satisfactorily when transplanted into
typically low-resolution hardware. Use of the digital ap-
proximation of a continuous activation function, and/or
range-limiting of weights should, in general, lead to an
unsatisfactory approximation. The solution to this prob-
lem may lie in a bottom-up approach – instead of trying
to fit a trained, but inherently analog network in digi-
tal hardware, train the network in such a way that it is
suitable for direct digital implementation after training.
This approach is the basis of the network proposed here.
This network, with synapses from {−1, 0, 1} and continu-
ous offsets1, can be formed without using a conventional
multiplier. This reduction in complexity, plus the fact
that all synapses require no more than a single bit each
for storage2, makes these networks very attractive.

It is possible that the severity of the {−1, 0, 1} restric-
1Offsets are also known as thresholds as well as biases.
2A zero-valued synapse indicates the absence of a synapse!

tion may weaken the approximation capability of this
network, however our experiments on classification tasks
indicate otherwise. Comfort is also provided by a re-
sult on approximation in C(R) [4]. That result, the
Multiplier-Free Network (MFN) existence theorem, guar-
antees that networks with input-layer synapses from the
set {−1, 1}, no output-layer synapses, unrestricted off-
sets, and a single hidden layer of neurons requiring only
sign adjustment, addition, and hyperbolic tangent acti-
vation functions, can approximate all functions of one
variable with any desired accuracy.

The constraints placed upon the network weights may
result in an increase in the necessary number of hidden
neurons required to achieve a given degree of accuracy
on most learning tasks. It should also be noted that the
hardware implementation benefits are valid only when
the MFN has been trained, as the learning task still re-
quires high-resolution arithmetic. This makes the MFN
unsuitable for in-situ learning. Moreover, high-resolution
offsets and activation function are required during train-
ing and for the trained network.

II. Approximation in C(R)

Consider the function f̂ :

f̂(x) =
I∑
i=1

σ(aix+ bi) +
J∑
j=1

ψ(cjx+ dj) + e (1)

where ai, cj ∈ {−1, 1}, bi, dj , e ∈ R, σ(·) = tanh(·),
ψ(·) = ασ(·), and α ∈ R\Q. The universal approxima-
tion property of f̂ can be stated as follows [4]:

MFN Existence Theorem Finite sums of the form f̂ are
uniformly dense on compacta in C(R). �

The network of equation 1 trades off the complexity of
individual neurons with a possible increase in their num-
ber. Although the complexity of the learning algorithm is
increased by the presence of two distinct activation func-
tions in the hidden layer, it is somewhat compensated for
by the lack of weights in the output layer.

This universal approximation result is for a SISO net-
work. No similar theoretical evidence for universal ap-
proximation of multivariable continuous functions is cur-
rently available, although the author conjectures it to
be true. This conjecture was tested with a series of ex-
periments with MIMO MFNs. The MIMO MFNs used
for these experiments differed with the SISO MFN of in
two ways: first, they were allowed to have output layer
synapses, but these synapses were restricted to {−1, 0, 1}

to preserve the multiplier-free functionality; secondly, α
was set equal to 1, which resulted in a homogeneous hid-
den layer. Neither step was necessary for the success
of these experiments, but they were taken to improve
the size and speed of the implementation: the first step
makes unnecessary the redundant presence of two hidden
neurons with outputs differing in polarity only and allows
the flexibility of not connecting some hidden neurons to
some of the output neurons; the second step makes un-
necessary the presence of two separate types of hidden
neurons, without noticeably degrading the learning per-
formance during the experiments.

III. Learning Procedure

A procedure for training feedforward networks having
discrete synapses and offsets will be presented here. It
can be adapted to train networks with various discrete-
weight schemes. This procedure, similar to the one pro-
posed in [5], was used to train only the synapses of the
MFNs – the offsets were trained using conventional error
Back-Propagation (BP). The same procedure was used to
train networks having discrete synapses as well as offsets.
These Discrete-Weight Networks (DWN), having weights
from the set {−3,−2,−1, 0, 1, 2, 3}, as well as the conven-
tional continuous-weight networks (CWN), were used to
get a measure of the relative generalization performance
of the MFNs.

The procedure starts by initializing the network with
small, continuous weights selected randomly from a uni-
form distribution. The conventional on-line BP proce-
dure is used for the minimization of the output error,
Eo. A weight discretization mechanism is superimposed
on this BP procedure to minimize the difference between
weights and a static weight discretization function, Q(w),
in the mean-squared sense. Therefore, the combined er-
ror function is:

E(W) = Eo(W) + Ew(W)

=
∑

all outputs
all examples

[t− o]2 +
∑

all weights

[w −Q(w)]2 (2)

The choice of discretization function is critical for the ef-
ficient discretization of weights. The discretization func-
tion used for the experiments of this paper is:3

Qtanh(w) =
3∑
i=0

tanh[3 (w + 2i− 3)] (3)

The key feature of this function is that the zeros of (w−
Qtanh(w)) have the required discrete values. In practice,
the application of this function is restricted to the interval
[−1, 1] for MFNs and [−3, 3] for DWNs, since any weight

3Another possible choice is Qsin(w) = w +
sin(w+1)π

π
. Of the

two discretizing functions, Qtanh(w) is computationally more ex-
pensive to generate, yet it does have the advantage in having an
adjustable slope between discrete values. It also uses the same
hyperbolic tangent function as the neuron activation function.

TABLE I

Discrete-weight learning

Initialize weights in the range (−0.5, 0.5)
Select example

Select a weight, w
w ← w − η ∂Eo∂w

w ← w − χ(w −Qtanh(w))
(

1− ∂Qtanh(w)
∂w

)
Loop

Loop until Eo < ε and Ew = 0

values outside this interval are truncated to {−1, 1} and
{−3, 3}, respectively.

The weight modification that can be used to minimize
the error function of Equation 2 is:

∆w = −∆wo − ∆ww (4)

∆wo = η
∂Eo
∂w

(5)

∆ww = χ
∂Ew
∂w

= χ
(
w−Qtanh(w)

)(
1− ∂Qtanh(w)

∂w

)
(6)

where η and χ are the learning and weight discretization
rates, respectively. A summary of the learning procedure
based on these equations is shown in Table I.

This learning scheme is a modified version of the con-
ventional on-line BP procedure – the modification being
the addition of a nonlinear weight shaping function to
the objective function. This modified objective function
contains a combination of hyperbolic tangent functions
only. As the hyperbolic tangent function is continuously
differentiable, all the discussion in [6] and [10] applies.
Hence, discrete-weight learning with a constant learning
rate is guaranteed to converge in probability to a solu-
tion provided that the sequence of training examples is
strongly stationary and ergodic [6]. Convergence with
probability 1 can be achieved by using a sequence of di-
minishing learning rates [10].

A. Practical Considerations

The results of the initial trials with the discrete-weight
learning procedure were not promising. Many of the trial
runs failed to converge even on simple learning tasks.
The number of epochs required for convergence to a so-
lution was unacceptably large because the weight values
hovered around discrete levels for too long without actu-
ally reaching them. This problem was due to the inter-
action of the error minimization and the discretization
mechanisms – the two mechanisms were nullifying each
other’s weight modifications which was resulting in paral-
ysis. The following guideline was drafted to resolve the
problems observed during the initial trials:

The procedure must mainly be based on gradi-
ent descent to benefit from the fast speed of that

heuristic. It should, however, have a stochas-
tic component to account for the large number
of local minima observed during the initial tri-
als. The paralysis observed during the initial
stages of learning should be avoided by letting
the BP mechanism dominate the learning pro-
cess when Eo is large. The weight-discretization
mechanism can have the upper hand when Eo
is small. This process should be augmented
with a weight-rounding mechanism to speed-up
convergence when weights have ‘nearly-discrete’
values. Lastly, the time consuming exact calcu-
lations should be replaced with their approxi-
mate but faster incarnations.

Keeping these ideas in mind, it was decided that the
learning process should start with little attention to
weight discretization: discretization should slowly come
into play as the network starts moving towards a solution,
and should gain strength with progress in learning. This
was accomplished by computing a new Eo-dependent χ
before each learning epoch: χ was made exponentially
dependent upon the negative of Eo.

χ := αχ e
(ε−Eo)βχ (7)

where αχ and βχ are empirical parameters, and ε is the
maximum acceptable value of Eo. This strategy did help
in the initial stage of training but not during the interme-
diate stage. The most likely reason was the formation of
new local minima due to discretization. It is well known
that the standard BP algorithm sometimes gets stuck
in local minima. The superposition of the discretization
process on BP can result in changes in the shapes of
these minima [12] or even an increase in their number.
At the start, Eo is large, and output error minimization
dominates. Conversely, the discretization process has the
upper hand when Eo is small. At intermediate values of
Eo, the two processes may nullify each other’s effect – re-
sulting in the formation of local minima. To avoid those
minima, the discretization process was augmented by a
perturbation mechanism:

∆ww ← ∆ww tan(RND), (8)
where RND is a random number selected uniformly from
(0, π/2). tan(RND) has a small value most of the time,
but infrequently, it becomes very large. This perturba-
tion strategy was successful, except in cases where a dis-
crete-weight network with an unacceptably large Eo was
generated. The solution that was adopted in those cases
was to strengthen the Eo minimization process. This was
accomplished by temporarily boosting the value of η by
a factor of kη for one learning epoch.

Weight-discretization is based on a mean-squared error
minimization heuristic. Its progress becomes painfully
slow as the system becomes closer to a solution. To over-
come this problem, a rounding mechanism for weights
with ‘nearly-discrete’ values was added to the discretiza-

TABLE II

Practical discrete-weight learning

Initialize weights in the range (−0.5, 0.5)
If Ew = 0 and Eo > ε

then boost η by a factor of kη for just this epoch
Select training example

Select a weight, w
w ← w − η ∂Eo∂w + µ∆woprevious
w ← w − αχe(ε−Eo)βχ (w − Round[w])tan(RND)
w ← B(w)

Loop
Loop until Eo < ε and Ew = 0

tion process. This mechanism acts as a set of ‘black holes’
centered at each discrete value. If a weight falls within
the black hole radius, ρ, its value is forced to the cen-
ter value of the black hole. The radius was computed
before each learning epoch, and was made exponentially
dependent upon the negative of Eo.

ρ := αρ e
(ε−Eo)βρ (9)

where αρ and βρ are empirical constants. The black-hole
function, B(w), for the DWN case can now be defined:

B(w) =

 3 sgn[w] |w| > 3,
Round[w] |w − Round[w]| < ρ,
w otherwise.

(10)

Finally, the (w − Qtanh(w))
(

1− ∂Qtanh(w)
∂w

)
term was

replaced by an easily computed approximation (w −
Round[w]). Easier computation is not the only advan-
tage of the approximate term – it also provides stronger
‘pull’ when a weight value is midway between two dis-
crete levels. After making all of the changes the final
version of the ∆ww modification is:

∆ww = αχ e
(ε−Eo)βχ(w − Round[w]) tan(RND). (11)

A momentum term was added to the BP mechanism to
strengthen the Eo minimization process.

∆wo = η
∂Eo
∂w

− µ∆woprevious (12)

where µ is the momentum and ∆woprevious is the ∆wo
calculated in the previous step. A summary of this more
practical version of the discrete-weight learning proce-
dure is shown in Table II.

B. Functionality Tests

A set of three learning tasks was used for testing the func-
tionality of the proposed learning procedure – XOR and
two encoder/decoder problems, 4:2:4 and 8:3:8. Feedfor-
ward networks with offsets and hyperbolic tangent acti-
vation function in both the hidden and output layer neu-
rons were used for these simulations. The training data
was scaled to the range [−1, 1]. Functionality testing in-
volved clean data therefore the L∞-norm, Eom , was used
as the error function: training was stopped when Eom
was less than a prespecified ε and all the weights had
reached discrete values. The network was reinitialized

TABLE III

Values of weight discretization parameters

Parameter Symbol α β
Weight-discretization rate χ 0.001 16
Black-hole radius ρ 0.1 6

if it did not converge to a satisfactory solution within
a fixed number of epochs, CR. These tasks were used
to monitor the behavior and interactions of the various
mechanisms present in the learning procedure and for the
fine-tuning of the learning parameters.4 The selected val-
ues for these parameters are shown in Table III.

IV. Generalization Performance

The synapses of MFNs, and synapses as well as offsets of
DWNs, have limited magnitudes. Moreover, these net-
works usually have larger hidden layers, compared with
their CWN counterparts. Because of the larger num-
ber of neurons in their hidden layers, their complexity
is more finely selectable than that of CWNs. This finer
granularity can be exploited to select a network with a
complexity that matches more closely with the complex-
ity of the learning task at hand. It was found from the
preliminary simulations on DWNs and MFNs that some
of the weights of the trained DWNs and MFNs had zero
values. That reduced the number of superfluous parame-
ters in the model. These three factors – smaller weights,
a more finely granular complexity, and zero weights –
point towards a simpler model, which should result in
DWNs and MFNs having a generalization performance
better than or equal to that of the CWNs.

The methodology of the generalization experiments
presented here was to train many CWNs, DWNs and
MFNs on a given set of data in similar circumstances,
and then to pick as representative of each of the three
paradigms the network which was the best generalizer,
and compare the performances of those representatives.
Two data sets were used for these experiments. Both –
the ‘onset of diabetes prediction’ data set and the hand-
written numeral recognition database – are publicly avail-
able and have been used in the past by many for the
purpose of benchmarking [2], [3], [7], [9]. The first set
has both discrete and continuous inputs, may have some
irrelevant inputs, may have much noise in the inputs,
may have a high degree of correlation between inputs,
and has a single binary output [7], [9]. The second set
is a representative of the image processing applications,

4The fine-tuning was made tricky by the presence of many ad-
justable parameters. An exhaustive study of the effect of varia-
tions was not attempted because of the sheer magnitude of the
task. Instead, the values of the weight-discretization parameters
were frozen after some initial experiments and only the BP learn-
ing rate η was used as the control parameter. The values of µ and ε
were also kept constant for these simulations and were varied only
for the generalization experiments presented latter in this paper.

has a high degree of information redundancy, has discrete
inputs, and many binary outputs [2], [3].

The regularization method selected for the experi-
ments was ‘optimal stopping of training’. It is fast, works
well with larger-than-necessary initial networks, and does
not require the introduction of any new training param-
eters except the ratio of train/test data split. The CWN
experiments presented here use weight-decay in addition
to ‘optimal stopping of training.’ This makes the compar-
ison between DWNs and MFNs, and CWNs more mean-
ingful, because DWNs and MFNs are not allowed to have
large weight values.

The only goal of the experiments presented in this sec-
tion is to compare the learning capability of the three
paradigms, CWN, DWN and MFN, in similar circum-
stances. Keeping this in mind, the ‘classification error
probability on the test data’ was used as the metric of
comparison, not sensitivity or specificity, as the goal is to
compare learning capability of three paradigms and not
the usefulness of the model.

The train-and-test technique was chosen to estimate
the generalization performance because of its simplic-
ity of implementation. Only two, instead of the rec-
ommended three, data subsets were, however, used for
this purpose – the first one for training, and the second
one for optimal stopping of training as well as estimating
the generalization performance. The dual use of the sec-
ond subset is not strictly appropriate as it has been used
during training and therefore the performance metric ex-
tracted from it is not an unbiased estimate of the gener-
alization performance of the trained network. In the case
of the experiments discussed here, however, the emphasis
is on comparing the relative generalization performances
of the three paradigms in similar circumstances, and not
estimating their true generalization performance. This
particular emphasis on comparison was the main reason
for the use of just two data subsets.

Network configurations with zero hidden neurons were
tested first, and then hidden neurons were added until
the network performance on test data failed to improve.
At least a hundred training runs were performed for each
network configuration, and many hundreds for promising
ones. Test data results reported here represent the best
performance of the optimal configurations.

A. Forecasting the Onset of Diabetes

This data set5 is related to a group of adult women be-
longing to the Pima Indian tribe and was collected by
the US National Institute of Diabetes and Digestive and
Kidney Diseases [1]. The learning task is to forecast the
onset of diabetes mellitus within five years of a clini-
cal examination. Eight risk factors, which were recorded

5The data set is available at ftp://ics.uci.edu/pub/-

machine-learning-databases/pima-indians-diabetes/ [8]

TABLE IV

Generalization performance on the diabetes data

Zero Effective Gen.
Network Config. Weights Weights Perf.

CWN 8:2:1 − 21 78.4%
DWN 8:6:1 26 35 76.9%
MFN 8:3:1 6 25 78.0%

during that clinical examination, are used to make this
prediction. 768 such clinical histories constitute the data
set out of which 268 are for patients who tested positive
for diabetes within five years of the clinical examination
and the rest were found to be healthy.

49% of the 768 clinical records had zero values for at-
tributes which cannot be zero. These are most probably
missing values. Moreover, it should be noted that this
database may be very noisy: some of the attributes may
be unimportant, some attributes may have been mea-
sured incorrectly, some of the most important attributes
may have been completely missing, and one of the at-
tributes, the diabetes pedigree function, is based on the
heuristic combination of many pieces of information.

Michie et al. used a set of 22 machine-learning, neu-
ral and statistical techniques to analyze this data [7].
They used 12-fold cross-validation to determine the gen-
eralization performance and achieved their best result of
87.7% with logistic discriminant analysis, whereas a fig-
ure of 75.2% was obtained with a CWN trained using
BP. Ripley [9] used 200 cases for training and 332 for
testing, and ignored the rest because of missing values.
The best CWN results in this study were obtained with
zero hidden neurons. The best result of this study was
a generalization performance of 81% obtained by using a
mixture representation and the EM algorithm.

For the simulation results presented here, a balanced
data set, i.e. a set having equal number of positive and
negative cases, of 536 cases was randomly selected. This
set was then split into two equal, balanced subsets for
training and testing. All eight attributes were standard-
ized to zero mean and unit variance. All attribute values
outside the [−1, 1] range were truncated to {−1, 1}

A comparison of performances is shown in Table IV.
One expects DWN to be the worst performer, but why
is the MFN, with its smooth and simple mappings due
to the presence of weights with small magnitudes and
many zero weights, not performing better or equal to the
CWN? Is it because the universal approximation conjec-
ture about its capabilities is wrong? That is a possible
reason. Another possible reason may have to do with
a fault on account of the experimental procedure: it is
possible that the two hyperplanes drawn by the hidden
neurons of the CWN are positioned in such a way that it
requires the superpositioning of a large number of MFN
hidden neurons to emulate them. The MFN experiments
were performed with a maximum of 19 hidden neurons

TABLE V

Generalization performance on the numeral data

Zero Effective Gen.
Network Config. Weights Weights Perf.

CWN 32:7:10 − 311 92.3%
DWN 32:10:10 169 271 91.8%
MFN 32:11:10 155 328 93.2%

and the best solution that was found used only a frac-
tion of those 19. It is possible that with more hidden
neurons a better solution can be found, but the price of
that tiny increase in accuracy is an impractically large
hidden layer.

B. Handwritten Numeral Recognition

The numeral database6 used for these simulations was
collected at Bell Labs [3]. It consists of 1200 isolated
handwritten samples of numerals 0..9. Twelve individ-
uals were asked to provide 100 samples each while fol-
lowing a given writing style, resulting in 120 examples
of each numeral. The sample style given to the writ-
ers was similar to the one required for the US Internal
Revenue Service’s machine-readable tax form, 1040EZ.
The raw images of those samples were normalized and
then thresholded to fit a 16× 16 binary pixel grid. This
database was then carved into two subsets of 600 sam-
ples each – the first five samples of each numeral from
every writer were used for training and the rest for test-
ing. Guyon et al. [3], and Druker and Le Cun [2], both
have reported a generalization performance of 97% with
a 256:20:10 network trained using conventional BP, and
a 256:40:10 network trained using ‘double backpropaga-
tion’, respectively. For the simulations presented here,
the 256 element matrices were transformed into 32 el-
ement vectors by summing the rows and columns. Al-
though this 8-fold reduction in input dimension did cause
a 4% reduction in generalization performance (compared
with [2], [3]), it made the running of many more sim-
ulations possible due to the reduced memory and CPU
requirements. Each element of these 32-element vectors
was then transformed as

x←− x− 8
8

The classification decisions were taken according to the
neuron with the maximum signal in the output layer.

CWNs, DWNs and MFNs with various 32:q:10 configu-
rations were trained and the results for the best networks
are shown in Table V. The lack of the universal approx-
imation property in a DWN7 may be the cause of the
slightly poor performance of the DWN, whereas the finer
control over network complexity may have caused the

6This database has been kindly made available by Isabelle Guyon
at ftp://hope.caltech.edu/pub/mackay/data/att.database

7The limitations imposed by bounded discrete weights are enough
to destroy its universal approximation capability.

slightly better performance of the MFN. Nevertheless, it
can be concluded that the very strong constraints placed
on the weights of DWNs and MFNs have not significantly
hampered their performance.

The number of zero weights in the best performing
DWN and MFN is quite large, 38% and 32%, respec-
tively. There are only 271 non-zero weights in the case
of the DWN. As each of these weights is 3 bits deep, the
complexity of the network is 817 bits. This means that
the network requires approximately 82 bits to store the
non-parametric characteristics of each numeral to give a
generalization performance of about 92%. In the case of
the MFN, 307 single bit synapses and 21 high-resolution
offsets are needed. This leads to a figure of 64 or 81
bits per numeral depending upon the fixed-point offset
resolution of 16 or 24 bits. The equivalent figures for
the CWN are 498 or 746 bits per numeral. Therefore, for
similar generalization performances, the ranking in terms
of storage efficiency is MFN, DWN and CWN, with MFN
being the best.

The DWN lacks the universal approximation capabil-
ity, whereas it was conjectured in Section II that the
MIMO MFN is a universal approximator. This suggests
that the learning ability, and therefore the generaliza-
tion performance, of the former should not be any bet-
ter than that of the latter. The experimental results on
both benchmarks support this suggestion. This crite-
rion also suggests that the generalization performances
of the MFN and CWN should be the same. The exper-
iments were inconclusive in confirming this assertion –
on the very noisy ‘forecasting the onset of diabetes’ task
the CWN was better by 0.4%, and on the larger but less
noisy handwritten numeral recognition MFN was bet-
ter by 0.9%. These differences, and those with respect
to the DWN, are nevertheless too small to manifest the
supremacy of any one of the three paradigms.

V. Conclusions

The number of multiplication operations required for a
forward-pass is equal to the number of non-zero synapses,
S 6=0, in a network. Experimental results presented in
this paper show that CWN and MFN require similar
number of non-zero synapses to achieve similar perfor-
mances. To achieve the fastest forward-pass, the CWN
requires O(n2) transistors to implement each n-bit fixed-
point flash-multiplication operation, whereas the MFN
requires O(1) transistors for a single 1-bit conditional
sign-changer. It can be concluded that for similar execu-
tion speeds, the cost of implementing the multiplication
operations in a CWN is O(n2S 6=0) compared with O(S 6=0)
for the MFN. Therefore, the replacement of the multi-
plication operations with sign-adjustments can greatly
speed up the calculations: in software and in hardware,
on sequential systems and on parallel ones. Although,
MFNs are, in general, larger than their conventional

counterparts in terms of the number of hidden neurons,
they should be more compact in hardware due to the ab-
sence of the conventional multipliers and 1-bit synapses.

Experiments to compare the generalization abilities of
three types of feedforward networks – CWN, DWN and
MFN – were performed in similar circumstances. The
results indicate that the MFN, despite having strong
constraints on its synapses, has a generalization perfor-
mance similar to that of its conventional counterpart.
In an application where the number of learning epochs
is not of consequence, and the size and speed of the
hardware implementation are the critical factors, this
new network with constrained synapses holds a clear
advantage over the conventional network due to the
storage efficiency of its weights and the elegance of the
way it implements its internal multiplication operation.

Acknowledgments: The author is grateful to Professors
R. Wilson and D. Whitehouse for their guidance during
the course of this work performed at the University of
Warwick, England, and supported by the Commonwealth
Scholarship Commission in the UK and the University of
Engineering & Technology, Lahore, Pakistan.

References
[1] P. H. Bennett, T. A. Burch, and M. Miller. Diabetes mellitus

in American (Pima) Indians. Lancet, 2:125–128, 1971.

[2] H. Drucker and Y. Le Cun. Improving generalization perfor-
mance using double backpropagation. IEEE Transactions on
Neural Networks, 3:991–997, 1992.

[3] I. Guyon, I. Poujaud, L. Personnaz, G. Dreyfuss, J. Denker,
and Y. Le Cun. Comparing different neural network archi-
tectures for classifying handwritten digits. In Proceedings of
the IEEE International Conference on Neural Networks, vol-
ume 2, pages 127–132, Washington, DC, 1989. IEEE Press,
New York, NY.

[4] A. H. Khan. Multiplier-free feedforward neural network is a
universal approximater in C(R). In 1997 IEEE (Pakistan Sec-
tion) Second National Multi Topic Conference (INMIC’97),
pages 33–36, Islamabad, Pakistan, April 1997.

[5] A. H. Khan and E. L. Hines. Integer-weight neural nets. Elec-
tronics Letters, 30(15):1237–1238, July 1994.

[6] C. M. Kuan and K. Hornik. Convergence of learning algo-
rithms with constant learning rates. IEEE Transactions on
Neural Networks, 2(5):484–489, 1991.

[7] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, editors. Ma-
chine Learning, Neural and Statistical Classification. Ellis
Horwood, New York, 1994.

[8] P. M. Murphy and D. W. Aha. UCI Repository of Machine
Learning. Department of Information and Computer Science,
University of California, Irvine, CA, 1995.

[9] B. D. Ripley. Pattern Recognition and Neural Networks. Cam-
bridge University Press, Cambridge, England, 1996.

[10] H. White. Learning in artificial neural networks: A statis-
tical perspective. Neural Computation, 1(4):425–464, 1989.
Reprinted in [11].

[11] H. White. Artificial Neural Networks: Approximation and
Learning Theory. Blackwell, Oxford, England, 1992.

[12] Y. Xie and M. A. Jabri. Training algorithms for limited preci-
sion feedforward neural nets. SEDAL technical report 1991-8-
3, Department of Electrical Engineering, University of Sydney,
NSW 2006, Australia, 1991.

