Feedforward Neural Networks
with Constrained Weights

Altaf Hamid Khan

A thesis submitted in satisfaction of the requirements for
the degree of Doctor of Philosophy

University of Warwick
Department of Engineering

August 1996

©Altaf Hamid Khan, 1996.
All rights reserved.
Permission is granted in respect of
single copies made for personal use only.
By choosing to view, print, or reproduce this document,
you agree to all the provisions of the copyright law protecting it.

Contents

List of Figures

List of Tables

Abbreviations and Symbols

Acknowledgements

Declaration

Summary

1 Feedforward Networks

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

Implementing Feedforward Networks in Hardware
Multilayer Feedforward Networks: Introduction
Application Examples

Biological -vs- Artificial Neural Networks

The Statistical Connection

Approximation Properties

Feedforward Network Training: Prerequisites
Feedforward Network Training: Procedures
Generalisation Performance

Hardware Implementation

Feedforward Networks with Constrained Weights
Historical Note

Overview of the Thesis

viii

Xi

Xiv

XV

XVi

© oo N S N

10
11
14
16
18
21
21

iI

CONTENTS

2 Theoretical Preliminaries

2.1
2.2

2.3
24

Theoretical Questions

Universal Approximation Property of CWNs

2.2.1 Universal Approximation in C(R?)

2.2.2 CWNs with Bounded Weights are Universal Approximators
Convergence of Error Backpropagation

Summary

3 Integer Weight Networks

3.1
3.2
3.3
3.4
3.5

3.6
3.7

Why Integer Weights?

Discrete-weight Networks

The Hidden Neurons -vs- Weight-Depth Trade-Off
Approximation Capabilities

Learning Heuristics

3.5.1 Weight Discretisation Schemes

3.5.2 Discrete-weight Learning Techniques
3.5.3 Integer-weight Learning

3.5.4 Convergence Properties

3.5.5 Practical Considerations
Functionality Tests

Discussion

4 Discrete-weight Approximation of Continuous-weight Networks

4.1
4.2
4.3

4.4
4.5

Introduction

Approximating Continuous-weight Perceptrons
Approximating CWNs with IWNs

4.3.1 Repeated Decision Surfaces

Error Surfaces

Discussion

5 Multiplier-free Networks

5.1
5.2

Introduction

Universal Approximation

24
24
25
27
28
31
33

35
35
37
38
39
40
41
42
46
49
49
56
58

61
61
62
64
68
74
7

79
79
82

11 CONTENTS

5.2.1 Approximation in C(R) 82

5.3 MIMO Multiplier-free Networks 87
5.4 Multiplier-free Learning 88
5.5 Functionality Tests 88
5.6 Discussion 90

6 Generalisation Experiments 92
6.1 Generalisation Performance 92
6.2 Estimation of Generalisation Performance 94
6.2.1 Empirical Estimation 94

6.3 Regularisation Techniques 96
6.4 Optimal Network 97
6.5 Generalisation Experiments 98
6.5.1 Methodology 98

6.5.2 MONK’s Benchmark 101

6.5.3 Forecasting the Onset of Diabetes Mellitus 104

6.5.4 Handwritten Numeral Recognition 108

6.6 Discussion 112

7 Conclusions and Further Work 117
7.1 Achievements and Conclusions 117
7.2 Future Work 120
Glossary 122
References 136
A Mathematical Proofs for Chapter 2 154
B Training Procedure and Parameters 163
C Decision Surfaces of Chapter 4 170
D Publications from This Thesis 185

Index 198

List of Figures

1.1

1.2
1.3

14

2.1

3.1
3.2
3.3
3.4

3.5

4.1

4.2

Detailed (top) and symbolic (bottom) representations of the artificial
neuron.

Examples of activation functions, o(-): logistic and hyperbolic tangent.
The conventional 2-layer d:q:1 feedforward network with d inputs, ¢
hidden neurons, and a single output.

Example of a good fit (a), an under-fit (b), and an over-fit (¢) of training
data. The first case will results in good generalisation, whereas the latter

two in poor.
Universal approximation in one dimension.

Two choices for the discretising function Q(w) [84].

Frequency distribution of numbers generated by tan(RND).

Qprac0).

Comparison of the actual error term and its approximation in the range
[—3, 3].

The black-hole function.

The set of decision boundaries of an integer [-3, 3] weight 2-input percep-
tron with offset. Some of the possible 7% decision boundaries lie outside
the {(-1, -1), (1, 1)} square, and therefore are not shown.

Linearly separable data sets with decision boundaries at gradually vary-

ing angles.

v

15

26

47
51

53

53

04

63

64

LIST OF FIGURES

4.3

4.4

4.5
4.6

4.7

4.8

4.9

4.10

4.11
4.12

IWN minimum F as a function of the number of hidden neurons for

Orms

the data sets shown in Figure 4.2. The 1 and 2 hidden neuron E, .
were found by exhaustive search, whereas the rest were determined by
finding the lowest of at least 10 training runs.

Training sets used for comparing the learning capabilities of IWNs and
CWNs. The thick lines are the examples of the minimum number of
possible dichotomies. A*~E* are slightly deformed versions of A-E with
smaller inter-point distances.

Hexagon training set with 0° rotation.

Decision surfaces after 6 consecutive training runs on the hexagon data:
with a 0° rotation for a 2:2:1 TWN (a-f); with a 15° rotation for a 711
IWN (g-1).

Decision surfaces after 6 consecutive training runs on problem D: 2:4:1
network with double-precision weights (a-f); 2:4:1 network with integer
weights (g-1).

Decision surfaces after 6 consecutive training runs on problem D*: 2:4:1
network with double-precision weights (a-f); 2:4:1 network with integer
weights (g-1).

Decision surfaces after 6 consecutive training runs on problem D: 721
network with double-precision weights (a-f); 7:2:1 network with integer
weights (g-1).

Decision surfaces after 6 consecutive training runs on problem D*: 224
network with double-precision weights (a-f); 2:3:1 network with integer
weights (g-1).

XORx training sets.

Symmetric weight 2:1:1 XOR network.

65

66
68

69

70

71

72

73
75
75

vi

LIST OF FIGURES

4.13 Error surface for the network of Figure 4.12 on the XOR% problem of

5.1

5.2

6.1
6.2
6.3

6.4

6.5
6.6
6.7

Ci1

Figure 4.11. The 7 images in the left half are for integer weights and
the rest are for a weight resolution of 0.125. w;, = 3. w;, = —3. 0O
is plotted along the horizontal axis of the contour plots, and 6, is along

the vertical axis. wyp, is the figure in the brackets.

A comparison of the decision boundaries of a integer [-3, 3] weight
perceptron (same as Figure 4.1) and a multiplier-free perceptron, each
with two input synapses and an offset. For the multiplier-free case the
synapses are restricted to the set {~1, 0, 1}, the offset is unconstrained,
and this figure shows the boundaries for an offset resolution of 0.1 only.
Decision boundaries which lie outside the {(-1, 1), (1, 1)} square are
not shown.

Multiplier-free feedforward network.

Using train and test-every-epoch for optimal stopping of training.
Using train and test-at-the-end to select network size or complexity.
Sample style for writing numerals on the machine readable U.S. Internal
Revenue Service tax form 1040EZ [1].

Feature reduction (256 — 32) of the handwritten numeral data. The 32
row and column sums instead of the 256 pixel values were used for both
training and testing.

Training data for handwritten numeral recognition

Test data for handwritten numeral recognition

Distributions of the individual row and column features obtained after
preprocessing the handwritten numeral training (left) and testing (right)
data according to the scheme depicted in Figure 6.4. The line passes

through the average value of each feature.

Decision surfaces after 6 consecutive training runs on problem A: 2:1
network with double-precision weights (a-f); 2:1 network with integer

weights (g-1).

76

83
84

100
100

109

110
111
112

113

171

vii

LIST OF FIGURES

C.2

C.3

C4

C.5

C.6

C.7

C.8

C.9

Decision surfaces after 6 consecutive training runs on problem A*: 2:1
network with double-precision weights (a-f); 2:1 network with integer
weights (g-1).
Decision surfaces after 6 consecutive training runs on problem B: 2:1
network with double-precision weights (a-f); 2:1 network with integer
weights (g-1).
Decision surfaces after 6 consecutive training runs on problem B*: 2:2:1
network with double-precision weights (a-f); 2:2:1 network with integer
weights (g-1).
Decision surfaces after 6 consecutive training runs on problem C: 2:3:1
network with double-precision weights (a-f); 2:3:1 network with integer
weights (g-1).
Decision surfaces after 6 consecutive training runs on problem C*: 2:3:1
network with double-precision weights (a-f); 2:3:1 network with integer
weights (g-1).
Decision surfaces after 6 consecutive training runs on problem E: 2:4:1
network with double-precision weights (a-f); 2:4:1 network with integer
weights (g-1).
Decision surfaces after 6 consecutive training runs on problem E*: 2:4:1
network with double-precision weights (a-f); 2:5:1 network with integer
weights (g-1).
Decision surfaces after 6 consecutive training runs on problem B: 21
network with double-precision weights (a-f); 211 network with integer

weights (g-1).

C.10 Decision surfaces after 6 consecutive training runs on problem B*: 31

network with double-precision weights (a-f); 211 network with integer

weights (g-1).

C.11 Decision surfaces after 6 consecutive training runs on problem C: 31

network with double-precision weights (a-f); 211 network with integer

weights (g-1).

172

173

174

175

176

177

178

179

180

181

Viii LIST OF FIGURES

C.12 Decision surfaces after 6 consecutive training runs on problem C*: 211
network with double-precision weights (a-f); 311 network with integer
weights (g-1). 182

C.13 Decision surfaces after 6 consecutive training runs on problem E: 2:2:1
network with double-precision weights (a-f); 7:4:1 network with integer
weights (g-1). 183

C.14 Decision surfaces after 6 consecutive training runs on problem E*: 721
network with double-precision weights (a-f); 7:5:1 network with integer

weights (g-1). 184

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

4.1

4.2

4.3
4.4

4.5

5.1

Weight resolution terminology

Integer-weight learning

Practical IWN learning

Values of weight discretisation parameters
Comparison of CWN and IWN Learning epochs

Direct discretisation to integer weights of trained CWNs of Table 3.5

Comparison of the minimum number of hidden neurons required by
CWNs and IWNs for learning problems of increasing complexity. The
corresponding decision surfaces are shown in Figures 4.7-4.10 (problems
D, D*) and Figures C.1-C.14 (the rest)

Comparison of the minimum number of hidden neurons required by an
IWN (with skip-layer synapses) for learning the hexagon data set as it
was rotated by 5° steps. The decision surfaces for 0° and 15° rotations
are shown in Figure 4.6

Repetition of decision surfaces

The locations and values of global minima of Figure 4.13. The italicised
figure indicates that one or more training instances were misclassified at
this global minimum

Global error minima (each of multiplicity 4) as a function of weight reso-
lution. The italicised figure indicates that one or more training instances

were misclassified at this global minimum

Comparison of CWN and MFN Learning epochs

X

37
48
54
57
57

28

67

68
74

7

7

89

LIST OF TABLES

6.1

6.2
6.3

6.4

6.5

6.6

B.1
B.2
B.3
B4
B.5
B.6

Network configurations for the MONK’s benchmark. The Alopex sim-
ulations used a slightly different input encoding resulting in 15 inputs
only

Comparison of generalisation performance on the MONK’s benchmark
Zero valued weights in the IWNs and MFNs trained on the MONK’s
benchmark

Comparison of generalisation performance on the forecasting diabetes
database

Comparison of generalisation performance on handwritten numeral re-
cognition

Classification chart for the test data showing the actual handwritten

numerals and the numerals predicted by the three feedforward networks.

Abbreviations and symbols used in this appendix only!
Integer-weight learning?

Training parameters for Chapter 3

Training parameters for Chapter 4 and Appendix C
Training parameters for Chapter 5

Training parameters for Chapter 6

102
103

104

107

114

115

164
165
167
167
169
169

Abbreviations and Symbols

BP
CWN
DNF
IWN
MFN
MIMO
RMS
SIMO
SISO
XOR

Error backpropagation learning algorithm
Continuous-weight network

Disjunctive normal form

Multilayer feedforward network with integer weights
Multiplier-free feedforward network

Multiple-input multiple-output

Root mean squared

Single-input multiple-output

Single-input single-output

The Exclusive OR function

approaches or converges to

a1 bmeansa <banda—b

The set A\ B consists of elements of set A which are not elements of B

belongs to

is a subset of

Feedforward network with d inputs, ¢ hidden neurons, and o outputs

d:q:0 network with skip-layer synapses

Value of ‘-’ calculated in the previous step

Empirical constant in the integer-weight learning procedure

An irrational number

x1

xii ABBREVIATIONS AND SYMBOLS

Qry Weight discretisation coefficient

a, Black-hole radius coefficient

B(w) Black-hole function

by Weight depth

I5; Empirical constant in the integer-weight learning procedure
By Weight discretisation coefficient

Bp Black-hole radius coefficient

X Rate of weight discretisation

Cr Reinitialisation epochs

Cr Training epochs

c() Set of all functions on the domain -’

Aweg The previous weight modification

ow Smallest modification that can be made to a weight

ow Perturbation in weight

d Dimension of the input vector

€ Maximum acceptable error in the network output

E, Error in the output of the network

E, Error of the output neuron with the maximum error during an epoch
E,.... Average RMS error in the network output for one epoch
FE, Weight discretisation error

n Learning rate

f) Target function to be approximated by the network

F) Network output

1 Momentum

N The set of all natural numbers, i.e. all integers > 0

N() Feedforward network

0; Response of the jth output layer neuron

p(+) Neuron activation function

q Number of hidden neurons

Q The set of all rational numbers

xiii

ABBREVIATIONS AND SYMBOLS

Weight discretisation function

Black hole radius

The set of all real numbers

The set of all all points in the real d-dimensional space

Random number selected uniformly from (0, 7/2)

Signum function, provides the sign of the argument or 0 if argument is 0
Neuron activation function

Sine function

Supremum of {-}

Target or desired value for the response of the jth output layer neuron
Tangent function

Hyperbolic tangent function

Offset of the jth neuron

Output of the jth neuron

Synapse connecting the jth hidden neuron to the output neuron
Output layer weight vector

Synapse connecting the ith input to the jth hidden neuron
Weight vector of a network

Total number of weights in a network

Network input

Network input vector

The set of all integers

Acknowledgements

The author would like to thank the the following persons and organisations:

Dr. Roland Wilson and Prof. David Whitehouse, for taking him on as their student
at such a late stage in his studies. For stimulating conversations, productive guidance,

and constant encouragement.

Mark Craven, Andy Larkin, Andy Pardoe, and Nick Porter for maintaining an en-
joyable working environment during occasionally difficult but often interesting times.

Especially Nick Porter, for his generous assistance in all matters computable.

Commonwealth Scholarship Commission in the United Kingdom for their financial sup-

port.

University of Engineering and Technology, Lahore, Pakistan, for granting him leave for

postgraduate study.

X1v

Declaration

All work reported in this thesis was carried out by the author unless stated otherwise.
All of author’s work reported in this thesis was carried out during his period of study

for the PhD degree. The publications which have resulted from the author’s work on

this thesis appear in Appendix D.

XV

Summary

The conventional multilayer feedforward network having continuous-weights is expen-
sive to implement in digital hardware. Two new types of networks are proposed which
lend themselves to cost-effective implementations in hardware and have a fast forward-
pass capability. These two differ from the conventional model in having extra con-
straints on their weights: the first allows its weights to take integer values in the range
[—3, 3] only, whereas the second restricts its synapses to the set {—1,0,1} while allowing
unrestricted offsets. The benefits of the first configuration are in having weights which
are only 3-bits deep and a multiplication operation requiring a maximum of one shift,
one add, and one sign-change instruction. The advantages of the second are in having
1-bit synapses and a multiplication operation which consists of a single sign-change
instruction.

The procedure proposed for training these networks starts like the conventional error
backpropagation procedure, but becomes more and more discretised in its behaviour
as the network gets closer to an error minimum. Mainly based on steepest descent,
it also has a perturbation mechanism to avoid getting trapped in local minima, and
a novel mechanism for rounding off ‘near integers’. It incorporates weight elimination
implicitly, which simplifies the choice of the start-up network configuration for training.

It is shown that the integer-weight network, although lacking the universal ap-
proximation capability, can implement learning tasks, especially classification tasks,
to acceptable accuracies. A new theoretical result is presented which shows that the
multiplier-free network is a universal approximator over the space of continuous func-
tions of one variable. In light of experimental results it is conjectured that the same is
true for functions of many variables.

Decision and error surfaces are used to explore the discrete-weight approximation
of continuous-weight networks using discretisation schemes other than integer weights.
The results suggest that provided a suitable discretisation interval is chosen, a discrete-
weight network can be found which performs as well as a continuous-weight networks,
but that it may require more hidden neurons than its conventional counterpart.

Experiments are performed to compare the generalisation performances of the new
networks with that of the conventional one using three very different benchmarks: the
MONK’s benchmark, a set of artificial tasks designed to compare the capabilities of
learning algorithms, the ‘onset of diabetes mellitus’ prediction data set, a realistic set
with very noisy attributes, and finally the handwritten numeral recognition database,
a realistic but very structured data set. The results indicate that the new networks,
despite having strong constraints on their weights, have generalisation performances
similar to that of their conventional counterparts.

XVvi

Feedforward Networks

1.1 Implementing Feedforward Networks in Hardware

Fase of hardware implementation is one of the features which distinguishes the feedfor-
ward network from competing statistical and machine learning techniques. The most
distinctive feature of the graph of a feedforward network is its homogeneous modular-
ity. Because of its modular architecture, the natural implementation of this network
is a parallel one, whether in software or in hardware. Although most current activ-
ity is in software implementations on serial computers [127], the unique benefit of the
feedforward network, i.e. fast speed of execution, can only be achieved through its
realisation in parallel hardware: electronic or optical, analogue or digital. Of these
parallel realisations, the digital electronic is the one that holds the most interest cur-
rently — the modular architecture of the feedforward network is well matched with the
current VLSI design tools and therefore lends itself to cost-effective mass production.
There is, however, a hitch which makes this union between the feedforward network
and digital electronic hardware far from ideal: the network parameters (weights) and
its internal functions (dot products and activation functions) are inherently analogue.

It is too much to expect a network trained in an analogue (or high resolution digital)

2 1.2 Multilayer Feedforward Networks: Introduction

environment to behave satisfactorily when transplanted into a low resolution hardware
setup. Use of the digital approximation of a continuous activation function, and/or
range-limiting of weights should, in general, lead to an unsatisfactory approximation
due to the nonlinear nature of the network. The solution to this problem may lie in a
bottom-up approach — instead of trying to fit an analogue network in hardware after
training, train the analogue network in such a way that it is suitable for implementation
in hardware after training. This approach is the main theme of this thesis.

The main purpose of this chapter is to present the principal concepts behind the
conventional multilayer feedforward network and to define some of the terminology that
will be invoked in the coming chapters. Many of the concepts presented here will be
discussed in more detail in later chapters.

After explaining the structure and functionality of the prototype feedforward net-
work, some of its recent applications will be presented. Its connections with biological
and statistical models will then be briefly discussed. The answers to the questions
‘what is this network capable of 7’ and ‘how difficult is it to train?’ are the topic of the
next two sections. Pre-training data processing techniques and an overview of methods
for network training are then presented. The ability of a network to learn the main
concepts hidden in noisy data will be discussed. Some examples of its implementation
in hardware are also presented. In view of the hardware implementation requirements,
the capabilities of networks with constraints placed on their weights are then explained.
After a short note on the major milestones in the development of feedforward networks,

this chapter concludes with an outline of this thesis.

1.2 Multilayer Feedforward Networks: Introduction

Multilayer feedforward networks are general-purpose modelling devices which can ex-
tract the functionality of the underlying process from examples generated by that pro-
cess. Each of these examples consists of the input vector and the response of the process
to that input vector. Feedforward networks are non-parametric in their modelling abil-

ity, in the sense that they do not demand any structural information about the process

3 1.2 Multilayer Feedforward Networks: Introduction

that they are modelling, merely its characteristic in the form of a set of input/output
examples. They “let the data speak for itself” [44].

Figure 1.1 shows the details of the fundamental processing element used in forming a
feedforward network. This element is conventionally known as the artificial neuron!-?
because its function is somewhat analogous to the biological neuron. Each neuron
calculates the dot product of the incoming signals x with its synaptic strengths w,
adds the offset 6 to the resultant, and outputs a value which is calculated by applying
an activation function to that sum. Two of the most common nonlinear activation
functions, logistic and hyperbolic tangent, are shown in Figure 1.2.

Figure 1.3 shows how the artificial neurons can be connected to form the conven-
tional multilayer feedforward network. From now onwards, this network will be referred
to as the Continuous-Weight Network (CWN). This d:¢:1 CWN has only a single out-
put, but in general it can have any number of outputs. For analytical studies however,
one needs to study only this single output prototype, as any k-output CWN can be
represented as an ensemble of k separate, single output CWNs. This particular CWN,
having two layers of neurons, is termed a 2-layer CWN. The input layer is not counted
as a layer as it does not perform any processing and consists of fan-out units only.
The middle layer is termed the hidden layer, due to its lack of direct connections
with the outside environment. The edges connecting the nodes to each other are called
synapses. The extra vertical edges coming into the hidden nodes are termed offsets?
It is assumed that the unconnected end of the offset edges is connected to a constant
value of 1. The term weight is used to refer both to the synapses and offsets. The
neurons in the hidden layer must have nonlinear activation functions for the CWN to
be able to perform nonlinear mappings. If the hidden neuron activation functions are

linear, the 2-layer CWN can be collapsed into a 1-layer d:1 CWN, commonly known as

"mportant new terms appear in boldface on first usage and their definitions are included in the
glossary as well.

2 Also known as a node.

3An offset for the output neuron is not required for the ‘universal approximation’ property (to be

discussed in Section 1.6) of the CWN to hold, but has customarily been used by the practitioners.

4 1.2 Multilayer Feedforward Networks: Introduction

T Cx;/
w)
= Gg/w?, M o()
x3 f B Ea—— u(x)

N\
. . /
L,

x3 §LJ B

u(x) =o(x-w+0)= a(Z WnTy + 9)

n=1

Figure 1.1 Detailed (top) and symbolic (bottom) representations of the artificial neuron.

(14e2)"! tanh(z)
lf 1
6 4 2 2 4 6- 6 4 2 5 4 6
-1 -1

Figure 1.2 Examples of activation functions, o(-): logistic and hyperbolic tangent.

5 1.2 Multilayer Feedforward Networks: Introduction

w12
x ‘ U3
! w13 ° wl
W1gq 4/
w3

2 /’ e
s /“‘z// G f(x)

T4 w

_QQ

Figure 1.3 The conventional 2-layer d:q:1 feedforward network with d inputs, g hidden

neurons, and a single output.

6 1.3 Application Examples

a perceptron?

This thesis discusses the 2-layer CWN, from now on termed as CWN only, exclu-
sively. CWNs with many hidden layers may have advantages in having more profound
mapping capabilities — they can implement a mapping with fewer weights as compared
with a 2-layer network having a similar performance. They are not, however, as well

understood as 2-layer networks and are harder to train [3].

1.3 Application Examples

It has been 10 years since the pioneering work of Rumelhart et al. [123], in which learn-
ing in multilayer feedforward networks was first introduced. A large number of papers
on the application of CWNs have since been published, in areas of application ranging
from medicine, finance, process industry, high energy physics, automotives, telecommu-
nications, robotics, to aerospace [85,111,159]. These applications are generally divided
into two groups: function approximation® and classification. This division is based
on the type of the desired outputs required to accomplish the task. If the output values
are continuous, the CWN is performing function approximation, whereas if the outputs
are restricted to a finite set of values, it is doing classification. The examples presented
below highlight recent applications in high energy physics, automotives, meat industry,
and nuclear material processing.

A fully parallel hardware implementation of a feedforward network is being used
for the closed-loop real-time control of the shape of the magnetic confinement field of a
high-temperature plasma in a Tokamak fusion reactor [17]. This feedforward network,
having digitally stored weights but analogue signal paths, and a bandwidth of > 20 kHz,

was trained using analytically generated data to simultaneously control the currents in

“Only an identity activation function is required in the output neuron for the ‘universal approxi-
mation’ property (to be discussed in Section 1.6) of the CWN to hold. It is however customary to use
a logistic or hyperbolic tangent function for ‘classification tasks’ (to be defined in the next section).
Having a logistic function as the activation function in output neurons also helps in the probabilistic
interpretation of their responses [12].

5 Also known as regression.

7 1.4 Biological -vs- Artificial Neural Networks

all of the coils generating the confinement magnetic field.

An example of an application in automotive safety is Delco Electronics’ supplemen-
tal inflatable restraint (air bag) controller which uses a feedforward network to distin-
guish between deployment and nondeployment events [70]. Time series data collected
from instrumented vehicle crash tests, along with the requirements of when and if air
bag must be inflated for different type of situations, was used to train the feedforward
network.

The Danish Meat Research Institute has recently announced® that it has successfully
completed the trial run on the prototype meat classifiers and will be deploying 8-10
units of these completely automated systems during the next year. These classifiers
determine the value of cow carcasses, with the help of weight and visual information.
It employs three feedforward networks to extract the class (cow, bull, or heifer) and
shape of the carcasses which are then used in a linear model to determine the payment
to be made to the farmer [19].

Urneco (Capenhurst) Ltd. employs a pair of feedforward networks for the closed-
loop control of copper lasers, which are used in isotope separation for uranium enrich-
ment [24]. These feedforward networks have been trained according to the actions of
experienced human operators to avoid certain load discharge conditions that reduce the
lifetime of expensive laser modulator components and therefore improve the efficiency,

due to decreased running costs and down time.

1.4 Biological -vs- Artificial Neural Networks

Although the original inspiration for work in the artificial neural network area was the
human brain, the emphasis has since shifted from biological plausibility to usefulness
as a computational tool. Artificial multilayer feedforward networks do, however, share
some features with the biological brain [38]: both are layered structures formed by
a number of homogeneous and simple processing elements — neurons. Both types of

neurons have many inputs and produce an output signal which is a nonlinear function

Tn a press conference on 25 June 1996.

8 1.5 The Statistical Connection

of the dot product of inputs and weights. The key factor that distinguishes neural
networks, both biological and artificial, from traditional computing paradigms is that
processing is asynchronous and local to the individual neurons. The major emergent
properties that these two classes of networks have in common are associative memory
and a degree of fault tolerance [38].

The main barrier to the wide acceptance of the plausibility of artificial feedforward
networks as analogues of the real ones is the learning procedures. It is well known
that synapses in a human brain change with experience, but the exact mechanisms
are not well understood because of the complex and distributed nature of the system.
There is some agreement, however, that it is nothing like the popular procedures used
for training feedforward networks. This, due to the fact that those procedures involve
some global computation steps, which is in violation of the strictly local theories of

learning in biological networks [39].

1.5 The Statistical Connection

Many neural network paradigms have their analogues in the statistical arena. The two
fields, however, cannot be considered as being identical twins — more like step-brothers.
The main differences between them are perhaps more cultural than technical [107]:
statistics has its roots in mathematics, neural networks in engineering, biology, and
computer science. Statisticians are usually conservative and pessimistic, neural folk
enthusiastic. Statisticians are often concerned with small samples, neural workers with
large data sets. Statisticians mostly deal with static data, while neural workers are
also interested in in-situ learning’ The majority of statisticians do mathematical
modelling, neural workers run computer solutions. Researchers in the artificial neural
network field also differ in having a long-term goal of designing artificially intelligent
systems. Both communities can, however, benefit from each other’s expertise: for

example, only recently the neural network community has started to benefit from the

"In-situ learning is performed by a deployed network which has already been trained. The deployed
network constantly adapts its weights with respect to changes in the input/output behaviour of its

target task.

9 1.6 Approximation Properties

rigorous frameworks, such as Bayesian techniques, available in statistics [11,113].

The feedforward network, the only neural paradigm discussed in this thesis, has a
direct analogue in statistics: projection pursuit regression [66]. Projection pursuit
is a generalisation of the CWN in that it allows more than one type of activation
function in the hidden layer. These non-homogeneous activation functions are data-
dependent and constructed during learning. Projection pursuit learning differs from
conventional CWN learning in that it is performed one hidden neuron at a time. The
output weight of a hidden neuron is optimised followed by the shape of the activation
function and then the input weights. It will be discussed in the next section® that
the CWN can approximate almost all functions® to any desired accuracy. Projection
pursuit regression, a generalisation of CWN, must also be able to approximate almost
all functions, and therefore does not hold any advantage in that area. The advantage
may, however, lie in its ability to construct more compact representations of arbitrary

training data sets due to its freedom in having data-dependent activation functions.

1.6 Approximation Properties

2-layer CWNSs are universal approximators in the space of Borel measurable func-

10" (see for example [63]). In other words, a 2-layer CWN exists that can, given

tions
enough training data and enough hidden neurons, approximate virtually any function
of interest to any desired degree of accuracy [127]. This is a very powerful statement
and provides great comfort to experimentalists in reinforcing their beliefs about the ca-
pabilities of CWNs. This, however, guarantees only the ezistence of an approximating
network and does not give any clues about how to construct one.

Correspondingly, loading a CWN, that is finding the set of optimal weights for

a CWN for a given set of training data, is an intractable problem. This problem has

been shown to belong to a class of very tough problems, called NP-complete problems,

8 Also in Chapter 2.
9See next section for the definition of ‘almost all’.
10Just about all functions that one may encounter are Borel measurable. Functions that are not

Borel measurable do exist but are known to mathematicians only as mathematical peculiarities.

10 1.7 Feedforward Network Training: Prerequisites

which are generally accepted to have no polynomial-time solution [42]. The difficulty
of solving problems belonging to this class increases exponentially with the number of
inputs. Intractability of loading, however, is the case for a fixed-size CWN only — if
hidden neurons can be added and eliminated during training then loading is tractable.
Moreover, fixed-size CWNs can be trained to achieve ‘good enough’ solutions instead
of optimal ones, which, in practice, is not as time consuming as achieving optimal

solutions, and is certainly better than having no solution at all [42].

1.7 Feedforward Network Training: Prerequisites

The cardinal choice in the training of a CWN is the choice of the number of neurons
in the hidden layer. This number is a function of the complexity of the concept to
be learned from the training data. In most cases, the complexity of that concept is
not known prior to training. In those cases, one of the following three schemes can be
employed: training several networks, ontogenic techniques, reducing the complexity of
a large network. The most frequently used technique is to start by training the simplest
network and try several networks with an increasing number of hidden neurons until the
required performance is achieved. Ontogenic schemes are self-constructing techniques,
of which the Cascade-correlation method is the most well known example [37]. This
method starts with a network without any hidden neurons and systematically increases
their number during training until the required performance is achieved. Finally, one
can also start with a large network and try to decrease its complexity during training to
match the complexity of the concept being learned. The thinking behind this technique
can be explained by the analogy of fitting an arbitrarily shaped object in a container
which is only slightly larger than the object in all dimensions. In general, fitting that
object in the container will be quite difficult, if possible at all. It is simpler to start
with a large container, place the object in the container, and then somehow shrink'!
the size of the container to achieve a very snug fit.

Pre-training data processing can be used to reduce training time and to improve

1 Guch ‘shrinking’ techniques in regard to CWNs will be discussed in Section 6.3.

11 1.8 Feedforward Network Training: Procedures

the quality of learning. For example, the standardisation of inputs to zero-means
and small magnitudes results in all the input vectors clustering around the origin.
This, combined with the initialisation of the CWNs at the start of training with small
randomly distributed weights which results in the start-up decision boundaries bunching
up around the origin, gives the CWN the best chance of fast learning [129]. Moreover,
Le Cun et al. have shown analytically that standardising the inputs to zero mean
improves the convergence properties of some learning procedures [82].

For discrete inputs or outputs, categorical variables should not be treated as con-
tinuous variables [13]. For instance, one of the input variables for the training data to
be used in Section 6.5.2 represents shapes and can have one of three values: round,
square, or octagon. This variable will not be represented as a single tri-state input, as
that imposes an ordering of square being somehow greater than round and less than
octagon [13], but as a triplet, having three possible states (1,0,0),(0,1,0), and (0,0,1)
depending upon the shape being round, square, or octagon, respectively [144].

In classification problems, outputs are generally encoded as {0,1} or {—1,1}. Due
to the fact that weight modifications computed by some learning procedures are pro-
portional to the output value of a neuron [122], the first encoding has the disadvantage
in that the weight modifications calculated by the learning procedure for class 0 are
smaller relative to the ones for class 1. The bipolar binary encoding does not have
this problem but suffers from the drawback that no learning takes place for the most
‘confused’ neurons, i.e. the ones with output values around zero. On balance, the
bipolar-binary encoding should be preferred as in that case the learning procedure

treats both output states in the same fashion during training.

1.8 Feedforward Network Training: Procedures

A training procedure is a collection of heuristics that finds appropriate weights for
a particular CWN, given a set of training examples, such that an appropriate cost

function, also known as an error measure, is minimised. The most often used error

12 1.8 Feedforward Network Training: Procedures

measures, Ly-norm measures, have the general form of:

=

J
E(W)= (> ltj—oil"} peN (1.1)
7=1

where W is the weight vector of the network, ¢; is the target or desired value of the
Jth output, and oj is its value computed by the CWN. Popular values for p are 1, 2,
and oo, with the p = 2 case, i.e. the least-squares measure, which emphasises the larger
errors, being the most common one. The p = 1 and p = oo cases are mostly used in

hardware implementations because they are easier to compute [59].

CWN training procedures can be divide into two major categories: those based on
steepest descent methods and those influenced by stochastic optimisation techniques.
Steepest descent methods attempt to minimise the cost function by taking small
steps on the error surface'? in the direction of the maximum gradient. This process
is analogous to a near-sighted skier trying to find the quickest way to the base of
a mountain by skiing down the slopes with the largest gradient. A computationally
efficient way of implementing this process in a CWN, called error backpropagation
(BP), was popularised by Rumelhart et al. [122]. In the batch!'? version of BP, the

15,16 vergion

weights are updated at the end of every epoch!* whereas in the on-line
weights are updated after the presentation of every training example. Both versions
are guaranteed to converge to a solution in appropriate circumstances (see Section 2.3).
The latter version is, however, faster for large training sets having some degree of

information redundancy among examples [14]. Two of the most common parameters

related to BP are learning rate, 77, and momentum, p: 7 determines the size of

2Error surface is the plot of the cost function with respect to all of the weights in a network.

13 Also known as off-line and total gradient-descent learning.

M An epoch is the cycle in which all examples in the training set are presented to the network.

15 Also known as instantaneous, incremental, pattern, and stochastic gradient descent learning.

6On-line learning differs from the in-situ learning mentioned in Section 1.5 in that the latter is the
property of a network requiring the deployed network to have adaptive weights, whereas the former is
a property of the learning procedure, requiring the weights to be updated on the presentation of every

example.

13 1.8 Feedforward Network Training: Procedures

the weight modification at each training step, and g controls the effect of the weight
modification of the previous step over the weight modification of the current step. If
7 is small and u close to 1, on-line BP approximates batch BP [128]. As training
examples are usually presented to a network in a random order, on-line BP does its
search in the weight space in a stochastic manner, and therefore is less prone (compared
with batch BP) to getting stuck in local minimal!7 of the error surface [53]. Weight
perturbation is an alternative to BP learning. In this method, all of the weights are
perturbed in turn and the associated change in the output of the network is used to
approximate local gradients [59]. This technique requires only feedforward calculations
for its operation, which simplifies its implementation in hardware [166]. It lacks the
mathematical efficiency of BP however, and therefore requires a large number of epochs
to reach acceptable solutions.

Stochastic methods are the less common alternative to steepest descent. A popular
representative of these methods is simulated annealing. This method is analogous to
the physical process of annealing [69]. It is different from methods based upon steepest
descent in that the myopic skier of the last paragraph is not always going downhill, but
going downhill only ‘most of the time’ [54]. This way the skier will not get trapped
in local minima. In this method, weight modifications are made permanent if the new
value of the cost function is lower or equal to the old one. If the new value is higher then
the weight change is accepted with a probability which diminishes with the number of
epochs. Besides the global minimum search advantage, stochastic techniques have the
added advantage that they do not require gradient computations, which is attractive
from the hardware implementation point of view. The main drawback of this class of
techniques is speed: they generally require a large number of epochs for convergence and
each epoch generally requires the recalculation of the cost function for every training
example and every weight change.

Steepest descent methods are fast but can get trapped in local minima, whereas

stochastic techniques have the ability of finding global minima but are slow. Methods

"Local minima are points of zero gradient on an error surface which are not global minima. Global

minima are the points of minimum error on an error surface.

14 1.9 Generalisation Performance

that combine the speed of steepest descent with the global optimisation character of
stochastic techniques are an attractive alternative. An example of this approach is a
modified version of on-line BP with a diminishing learning rate: the modification being
the addition of decreasing amounts of random noise to the weights at each weight BP

modification step [75]. This procedure is guaranteed to converge to a global minimum.

1.9 Generalisation Performance

Generalisation performance!® — the accuracy of a trained network on a set of data which
is similar to but not the same as the training data set [53] — is the key metric which
determines a learning paradigm’s usefulness [15]. This metric can be maximised by
selecting a data set which completely represents the concept to be learned, and using
that set, along with a global-minimum finding procedure, to train a network having a
complexity that matches that of the concept to be learned.

A trained network will be a good generaliser if it has learned the concept embedded
in the training data [16]. Training a network to be a good generaliser is not a trivial
task because most real-life applications demand training with noisy data. A good gen-
eraliser usually has a smooth input to output mapping, which generally means that it
will not have many large weights [16]. More complex networks give a better fit to train-
ing data but are not good generalisers. The best generalisers are neither too complex
nor too simple, but match the the complexity of the problem exactly. Training the best
generaliser is quite difficult, just like fitting an object into a container which exactly
matches the dimensions of the container. Poor generalisation results from the networks
over- or under-fitting the training data. An over-fit is due to the network having a
higher complexity than the concept embedded in the training data. This causes the
network to essentially become a ‘look-up table’ for the training data [53]: the network
behaves very well for the training data, but gives erroneous responses to inputs which
are nearby but not actual training data. This situation in the one dimensional case

is shown in shown in Figure 1.4(c). An under-fit is caused by the network having a

18 Also known as statistical inference.

15 1.9 Generalisation Performance

O Training data
® Test data

x
(b)
A
[]
=
S
- >
()

Figure 1.4 Example of a good fit (a), an under-fit (b), and an over-fit (c) of training

data. The first case will results in good generalisation, whereas the latter two in poor.

16 1.10 Hardware Implementation

complexity lower than that of the concept embedded in the training data. In general, it
is harder to detect an under-fit during training as compared with an over-fit. The tech-
niques for avoiding an over-fit and consequently improving generalisation performance,

i.e. regularisation techniques, will be discussed in Chapter 6.

1.10 Hardware Implementation

Although most feedforward networks are implemented in software on serial comput-
ers [127], a very attractive feature of CWNs, i.e. fast speed of execution, can only be
achieved through their realisation in parallel hardware: general purpose or customised,
optical or electronic, analogue or digital, or any combination thereof. Custom hard-
ware has the advantage in speed'® and the disadvantage in cost. Electronic hardware is
generally compact and cost-effective. Optical hardware has the advantage of free-space
connectivity. Analogue electronic systems are usually very fast, but suffer from suscep-
tibility to noise, manufacturing difficulties, and lack of non-volatile on-chip adjustable
weights [56]. Digital electronic systems have the drawbacks of limited resolution com-
putation and slow speed. They are less susceptible to noise and have non-volatile
adjustable weights. Their main advantage is however in the ease of implementation
due to the availability of a wide variety of mature VLSI tools and manufacturing fa-
cilities. This is the reason for their popularity, as is clear from the large number of
reported systems [56,67]. This section discusses digital electronic systems along with
an analogue-digital electronic hybrid that has overcome the limited resolution compu-
tation drawback of the digital systems and the lack of non-volatile on-chip adjustable
weights of analogue systems.

The L Neuro 1.0 chip manufactured by Philips [92] is an example of a simple digital
implementation of feedforward networks with adjustable weights. It can be configured
as having 64 neurons with 8-bit weights or 256 neurons with 4-bit weights. Each neuron

has 16 inputs. During learning, 16-bit weights must be used, allowing a maximum of

¥ And in many cases, better accuracy as well, because the hardware is designed to be very well

matched with the target CWN.

17 1.10 Hardware Implementation

32 neurons only. The output of the neurons are computed sequentially with the help
of a serial-parallel multiplier which performs the products and accumulations for the
matrix-vector products. The activation function calculation is done with the help of
an off-chip look-up table — a major drawback. This chip was designed to do on-chip
Hebbian learning?’ only, but can be trained with BP with the help of a host processor.
More than one chip can be cascaded to increase the number of neurons or the number
of inputs for each neuron.

The RN-200 chip by Ricoh [108] is a unique design in that it implements its input,
internal, and output signals as stochastic pulse trains. The advantage of this encoding
is in the ease of computation: sums can be implemented as a logical OR, products
as AND, and 1 — x as COMPLEMENT(x). The sigmoidal activation function is also
implemented implicitly with an OR operation. Negative quantities are expressed in
terms of inhibitory and excitatory synapses. There are 16 neurons on a chip, each having
up to 16 inputs. Weights have a resolution of 8-bits. The computational accuracy of
this chip depends upon the absence of correlation between pulse trains. This is achieved
by implementing each weight with its own random number generator. The presence of
on-chip BP training makes this chip very useful for embedded applications.

The WSI?' neurocomputer from Hitachi [168] uses an input, an address, and an
output bus to connect 1152 neurons in a SIMD?? array. The address bus is used to
sequentially select the 8-bit weights from common memory, and the dot product of
inputs and weights is sequentially accumulated. A single activation function calculator
is used by all neurons. The output bus is used to sequentially communicate the outputs
to other neurons. The number of possible neurons is halved during on-chip BP training.
For simplifying the implementation of BP, each neuron consists of two physical neurons
during training. The resolution of weights is increased to 16-bit during training. An

8-bit Aweg (the change in weight during the last modification step) is assigned to each

20The idea behind Hebbian learning is that the synapse between two neurons should be strengthened
if they fire simultaneously.
H\Wafer Scale Integration.

22Gingle instruction, multiple data

18 1.11 Feedforward Networks with Constrained Weights

weight for the momentum term calculations. A unique feature of this implementation
is that to reduce storage requirements, only the 64 largest weight values are ever kept
in the memory — all others are forced to zero.

The analogue-digital hybrid feedforward network used in the Tokamak reactor of
Section 1.3, which has an output resolution of at least 8 bits and a bandwidth of
> 20 kHz, was implemented as three separate VME-bus cards. The first card uses
analogue electronics to buffer and normalise the inputs. The second one consists of
12-bit digital to analogue converters, configured as 4-quadrant multipliers of analogue
signals with digitally stored 12-bit weights. The third card implements an analogue
activation function, hyperbolic tangent, with the help of two temperature compensated
transistors configured as a long-tailed pair. This hybrid scheme exploits the individual
strengths of the analogue and digital domains — the non-volatile weight storage of the
former and the high resolution and fast signal processing of the latter — while avoiding
their weaknesses — the volatile weight storage of the latter and the low resolution and
slow signal processing of the former.

At least one of two bottlenecks on processing speed and/or size of the implementa-
tion manifest themselves in all four of the above examples: storage of high-resolution
weights and the multiplication operation. The multiplication operation is the main bot-
tle neck due to the large number of multiplications required, inherent slowness of the
serial multiplication operation, and the physical size of the multiplier. The main con-
tribution of this thesis relates to the characteristics of the feedforward networks having
low-resolution weights and the simplification or complete exclusion of the multiplication

operation.

1.11 Feedforward Networks with Constrained Weights

With the exception of the last section, all the discussion so far has been about CWNs
having continuous weights of arbitrarily large magnitudes. Such weights are not possi-
ble in practice. In digital electronic hardware, a designer has to determine the amount

of memory required to store the weights by considering two factors [112]: the mini-

19 1.11 Feedforward Networks with Constrained Weights

mum variation by which a weight can be modified, Jw, and the difference between the
maximum and minimum value of weights, the dynamic range. The ratio of these two
factors determines the weight depth b,,, the number of bits of storage required for

each weight:

Wmax — Wmin

by = log, 5w
Clearly, any desired increase in either the precision or dynamic range of weights in-
creases the weight depth. Weight depth not only affects the storage requirements but
also the speed and cost of computational circuitry. Consider the multiplication oper-
ation: the number of multiplication operations required for a forward pass in a CWN
is the number of synapses in that network. The quickest way to perform a multiplica-
tion is with a flash multiplier. An n-bit fixed-point VLSI flash multiplier consists of
n x n full adders, each one of which is made up of 31 transistors. The slower but more
cost-effective option is to have a single multiplier in each hidden and output neuron,
and to perform the multiplications in a sequence instead of all in parallel. To reduce
the transistor count even further at the expense of slower computations, a sequential
multiplier can be used. Clearly, any desired increase in the weight depth results in slow
and/or expensive multiplier.

The above discussion points towards placing constraints on weights due to the re-
quirement of the smallest possible b, for achieving fast and cost-effective hardware
implementations. The question that now arises is: does this requirement effect the
approximation capabilities of a feedforward net? If it does affect the approximation
capability, then in what way? Is the reduction in capability gradual with b,, or abrupt?
Can it somehow be compensated for by adjusting the only other variable in the CWN ar-
chitecture: the number of hidden neurons? And what about the training procedure: are
the conventional continuous weight methods appropriate for networks having weights
with limited resolution? The answers to these questions will be discussed by consid-
ering three variations on the constrained weight theme: bounded weights, bounded
weights having limited-resolution, and bounded and limited-resolution synapses, but
continuous valued offsets.

Stinchcombe and White [137] have shown analytically that provided the activation

20 1.11 Feedforward Networks with Constrained Weights

function meets certain criteria, the bounds on a CWN’s weights can be traded off with
a possible increase in the number of hidden neurons without sacrificing the universal
approximation property. In particular, the input-layer weight vectors for the hidden
neurons can be restricted to unit-magnitude provided that the activation function is a
logistic or hyperbolic tangent function. Further details on this topic will be presented
in Chapter 2. These networks can be trained using conventional techniques with the
modification that disallows weights to exceed set bounds.

Networks with small discrete weights are ideal for digital implementation for having
low storage requirements and a simplified multiplication operation. It will be shown
in Chapter 3 that these networks do not possess the universal approximation capa-
bility. Experiments with these networks, in particular with networks having small
integer weights, however, show that approximation capability of these networks is not
significantly affected despite having strong restriction on weights. The loading of a
discrete-weight perceptron is known to be NP-complete [147]. This, combined with
the fact that the loading of a 2-layer CWN is NP-complete, makes the task of loading
the discrete-weight feedforward network quite formidable. The learning procedure pro-
posed for the training of these discrete-weight networks relies on the modification of the
BP cost-function along with a separate discretisation mechanism for ‘nearly discrete’
weights.

Networks with discrete synapses but continuous offsets have the unique advantage
over CWNs in that they do not require a continuous domain multiplier. In particular,
if the synapses are restricted to the set {—1,0,1}, the conventional multiplier can be
discarded altogether. But how does that affect the approximation capability? It will
be analytically shown in Chapter 5 that such networks can approximate functions of
one variable with any desired accuracy. Moreover, experiments with multi-variable
functions show that this multiplier-free network has approximation capability similar
to the CWN. The learning procedure for these networks is a slightly modified version

of the one for discrete-weight networks of the last paragraph.

21 1.12 Historical Note

1.12 Historical Note

Artificial multilayer feedforward networks draw their inspiration from the studies on
the structure of the biological nervous systems. Such artificial layered structures were
first investigated in the late 50’s. Their usefulness as iterative learning machines did
not manifest itself in that era due to the lack of a suitable learning algorithm [104]. The
breakthrough came in 1986 with the publication of two volumes by the PDP group titled
Parallel Distributed Processing: Explorations in the Microstructure of Cognition [123,
124]. Although ideas similar to the BP learning rule had been presented earlier [79,
109,154], it became popular only after the publication of these volumes. The next big
step in the continued development of the feedforward network was the development
of proofs on the universal approximation capability of the 3-layer CWN [80] and later
on the 2-layer CWN [29] in the late 80’s. The last major achievement in this field,
though still in its infancy, has been the integration of CWNs in a Bayesian framework
(see, for example [86,102,141]). This recent approach about the architecture and
learning parameters selection is based on Bayesian statistics?® and holds the promise

of delivering optimal generalisation performance.

1.13 Overview of the Thesis

After a presentation of the main theoretical concepts of the work, experiments on a
variety of data sets will be used to substantiate the claim that the two constrained-
weight networks proposed here are just as effective as conventional networks in practice.

Chapter 2 first provides a simple view of the universal approximation property and
then a detailed analytical treatment of a special case of feedforward networks — networks
with bounded weights. This bounded-weight result will be required in a later chapter for
proving a theorem on the existence of multiplier-free networks. Results focusing on the

backpropagation heuristic will then be presented in terms of the relationship between

23 Bayesian approach differs from the conventional ‘frequentist’ approach to statistics in that it allows
the probability of an event to be expressed as ‘degree of belief’ in a particular outcome instead of basing

it solely on a set of observations [15].

22 1.13 Overview of the Thesis

the form of the learning rate and the type of convergence that can be guaranteed for
that form. This result will be used in the next chapter in support of the integer-weight
learning procedure.

Chapter 3 provides experimental evidence that feedforward networks with low-
resolution discrete weights are a viable alternative to networks having continuous
weights. These discrete-weight networks, although lacking the universal approximation
capability, can implement learning tasks, especially classification tasks, to reasonable
accuracies. After highlighting the hardware implementation advantages and justifying
the choice of discretisation scheme, this chapter presents one of the main contributions
of this thesis — the integer-weight learning procedure. Only the preliminary results on
the functionality tests of this procedure will be presented in this chapter. The main
results on generalisation performance will be held back until later, where they will be
contrasted with those for continuous-weight networks and multiplier-free networks.

Chapter 4 explores the capabilities of discrete-weight networks with the help of the
decision and error surfaces of a set of 2-D classification problems, which are generali-
sations of the conventional ‘exclusive or’ problem. It is shown that provided a suitable
discretisation interval is chosen, a discrete-weight network can be found which performs
as well as a continuous-weight network, but that it may require more hidden neurons
than its continuous-weight counterpart.

Chapter 5 starts by presenting a new theoretical result on the ‘universal approxima-
tion in the space of continuous functions of one variable’ property of a multiplier-free
feedforward network. The multiplier-free functionality of this single-input single-output
network has been made possible by restricting the input layer synaptic strengths to
{—1,1}. This chapter also provides experimental evidence that multiple-input multiple-
output multiplier-free feedforward networks with synapses from {—1,0,1} and unre-
stricted offsets are a viable alternative to networks having high-resolution weights.

Chapter 6 is concerned with comparing the generalisation performance of the two
new feedforward networks proposed in this thesis — integer-weight and multiplier-free —
with that of the conventional continuous weight feedforward network. This chapter pro-

vides experimental evidence that the new networks, despite having severely constrained

23 1.13 Overview of the Thesis

weights, are as effective as conventional feedforward networks. It starts by discussing
the techniques that are commonly used for estimating the generalisation performance.
Various regularisation techniques used for tailoring the complexity of a network with
respect to the learning task at hand are then presented. The target network of the
generalisation experiments, the optimal network, is then defined. After presenting the
the methodology of the learning experiments, this chapter concludes with the results
on three very different data sets.

The final chapter brings together the key ideas presented in this thesis. It also
suggests some interesting problems for further work on the ‘hardware-friendly’ networks
proposed here.

Proofs of the theorems and lemmas of Chapter 2 are presented in Appendix A.
Appendix B contains the details of the integer-weight learning procedure and the values
of the learning parameters used in each of the experiments reported in this thesis.
Appendix C displays the decision surfaces mentioned but not shown in Chapter 4. The
publications which have resulted from the author’s work on this thesis, particularly on
the work presented in Chapters 3 and 4, appear in Appendix D. A list of abbreviations
and symbols, an extensive glossary, a list of references, and a comprehensive index

follow the appendices.

This and the next chapter largely comprise review material, whereas the remaining

chapters mainly consist of original work.

Theoretical Preliminaries

2.1 Theoretical Questions

For a given artificial feedforward architecture, it is possible to theoretically explore
many an interesting issue: What kinds of mappings can it learn (linear, nonlinear, con-
tinuous, smooth, measurable) [63,136]7 What type of neuron activation functions are
permissible [27,83,136]7 Is it capable of ‘universal approximation’ [29,62,68]7 What is
the relation of the quality of approximation with the number of neurons or the depth
of weights [22,64]7 How difficult is it to train the network [18]7 What is the expected
generalisation performance and its relation with the number of necessary training ex-
amples [7]7 Similarly, questions can be raised about the convergence properties of a
given combination of a neural architecture and a specific learning heuristic [74]. This
chapter discusses only two of these issues because of their relevance to the work pre-
sented in Chapters 3 & 5: a feedforward network’s approximation properties and its
convergence characteristics with respect to the error backpropagation heuristic.

The theoretical results on the universal approximation property have their impor-
tance in the confidence they instil in feedforward network users: they are assured that

provided they employ a data set that completely describes the process to be learned,

24

25 2.2 Universal Approximation Property of CWNs

to train a feedforward network of a suitable complexity with the help of an appropriate
learning procedure, they can model the input/output characteristic of any mapping
that is Borel measurable. Similarly a theoretical analysis can be used to fine tune the
convergence characteristics of an individual learning procedure as well as to compare
the merits of two competing procedures — all without utilising costly empirical studies.

After providing a simple view of the universal approximation property and a review
of the various universal approximation results, this chapter provides a detailed ana-
lytical treatment of a special case of feedforward networks — networks with bounded
weights. An application of this result will be used to prove the ‘multiplier-free net-
work existence’ theorem in Chapter 5. It then presents results on the backpropagation
heuristic which focus upon the relationship between the form of the learning rate and
the type of convergence that can be guaranteed for that form. Some of these results

will be used in support of the integer-weight learning procedure presented in Chapter 3.

2.2 Universal Approximation Property of CWNs

The discussion in this section will be restricted to feedforward networks with a single
layer of hidden neurons having sigmoidal activation functions, and a single output
neuron with a unity activation function. The only property of interest is universal
approximation in C'(R?), the space of continuous functions on R?

To start with a simple example, Figure 2.1 shows a continuous function f being

approximated with the help of a series of rectangular pulses. The error in the approx-

=[S - s

imation 1is:

m=1
This error, i.e. the cost function, can be decreased to any desired level! by selecting an
appropriate value for Azx. As Ax = (zp741 — x1)/M, the quality of the approximation
is proportional to the total number of the pulses in the summation, i.e. M. The

approximator generating these pulses is a ‘universal approximator’ in C'(R) if it can

With the exception of identically zero.

26 2.2 Universal Approximation Property of CWNs

fla)y Y
\

© /
<g’? p

2y

g

/
NLY
T1 T9 —| Az k- $M+1=

Figure 2.1 Universal approximation in one dimension.

achieve any desired value of ¢ for any f € C'(R). This requires the approximator to be
capable of generating pulses of arbitrary widths, heights, and positions. It can generate
such arbitrary pulses if it is capable of generating step functions of arbitrary heights
and positions. Therefore, the universal approximating capability of an approximator
is solely dependent upon its ability to generate step functions of arbitrary heights and
positions. Such arbitrary step functions can obviously be constructed with any desired

level of accuracy with functions of the form
wo(wx + 0),

where w® w,0 € R, and o(+) is the logistic function. The sum of the magnitudes of
the error in this approximation and that in approximating f with rectangular pulses
bounds the total error of approximation due to the triangle inequality? As both of
the component errors can be reduced to any required level, their combination can be
reduced to any desired level. This discussion leads to the conclusion that for a suitable

value of ¢, a sum of the form

q
Z wio(wjz + 6;),
i=1

®la +b] < |a| + [b]

27 2.2 Universal Approximation Property of CWNs

where w?

?,wj,0; € R, can approximate any function in C(R) to any desired toler-

ance, i.e. sums of this form are universal approximators in C'(R). Similar arguments
for approximation in C(R?) or C(R?) require the capability of constructing 2- (or
d)-dimensional ‘bricks’ of arbitrary sizes at arbitrary positions that can be ‘stacked

together’ to form 2- (or d)-dimensional function.

2.2.1 Universal Approximation in C(R?)

Numerous results, utilising a vast array of mathematical tools and making various
assumptions about the construct of the network, are available on the universal approx-
imation in C(R?) property of feedforward networks [26, 27,29, 41, 55, 62, 63, 83, 136].
Cybenko [29] employed Hahn-Banach and Riesz Representation Theorems, Carroll and
Dickinson [26] used Radon transforms for a constructive proof, Funahashi [41] invoked
Fourier analysis and Paley-Wiener theory, while Hornik et al. [63] utilised the Stone-
Weierstrass theorem to show the universal approximation property with continuous
activation functions on compacta®* in C(R?) with respect to the supremum?® norm.

Leshno et al. [83] showed that non-polynomial activation functions which are lo-
cally bounded and piecewise continuous are necessary for universal approximation.
Hornik [62] proved universal approximation capability on compacta for networks hav-
ing activation functions which are locally Riemann integrable and non-polynomial.
Chen et al. [27] presented a constructive proof which shows that the sigmoidal activa-
tion function need not be monotone or continuous, only bounded for approximation in
C(R4)S

All of the above universal approximation results assume that the CWN can have
weights of arbitrary precision and magnitude. This assumption is not biologicaly plau-

sible, and is a hindrance from the hardware implementation point of view. Stinchcombe

3(Closed and bounded subsets of R?.

4Focusing on compact domains in R instead of the whole of R makes the problem easier.

SSupremum is the least upper bound for a set.

6C(R?) is the extended C'(R?). If a continuous function is defined in R? and lim|y| 00 f(x) exists,
then f is called a continuous function in the extended R?, i.e. R?, and the set of all continuous functions

on R? is C'(R%) [27].

28 2.2 Universal Approximation Property of CWNs

and White [137] have come up with a result which trades off bounds on the magnitude
of network weights with a possible increase in the number of the hidden neurons, which
is highly relevant to the work presented in Chapter 5 and will therefore be discussed in

detail in the next section.

2.2.2 CWNs with Bounded Weights are Universal Approximators

This section will follow the closely the approach chosen by Stinchcombe and White [137],
in which they enforced some restrictions on activation functions to achieve the universal
approximation property for networks with bounded weights. The results of this section

will be used in proving the multiplier-free network existence theorem of Section 5.2.1.

Only the statements of the main results are presented in this section. The detailed

mathematical proofs are provided in Appendix A.

Consider the approximation of functions f € C(R?) with a 2-layer feedforward network
N%(o,B), where o is the continuous hidden layer activation function and B, 0 <
B < 00, is the maximum allowed weight magnitude. Let A? be the set of real affine
transforms” on R?, A : R? = R, ie. A(x) = w-x+ 60, where w € R?, § € R, and

|A| = max{|w;|,|0|}. A d-input feedforward network is defined as
K q
N4(o,B) = {f(x) = wio(4;(x)): A; € A and
j=1
max{|w;’|7 |A;]:1<j<q} < B}.

where, ¢ is the number of hidden neurons, x is the d-dimensional input vector, w; is
the input layer synaptic vector for the j-the hidden neuron, 6; is the offset and w7 € R
the output layer synapse of that hidden neuron. This network is the same as that of
Figure 1.3 except for the restriction on the magnitude of the weights.

A network A is defined to have the universal approximation property over C'(R)

"Rotations, shifts, and scalings, or any combination thereof, are affine transforms.

29 2.2 Universal Approximation Property of CWNs

if A is dense®? in C(R?). N¢(o, B) is said to be uniformly dense in C(R?) on the
compact set K C RY if for all f € C(R%) and every ¢ > 0 there exists f € N%(o, B) such
that sup{|f(x) — f(x)| : x € K} < e. In this case, N4o, B) is also uniformly dense
in C(K). N%o,B) is uniformly dense on compacta in C(R?) if it is uniformly
dense in C'(R?) on every compact K. The goal of this section is to prove this ‘uniform
denseness on compacta’ property for the CWN with bounded weights.

The following theorem can be used to simplify the investigation into the universal
approximation property. It shows that the existence of a universal approximation proof

in 1-dimension guarantees its extension in d-dimensions.

Theorem 2.1 Let 0 : R — R be a Borel measurable function and let 0 < B < oco. If
N(o, B) is uniformly dense in C(R) on some non-empty compact interval [—s, s], s >

0, then for d € N, N4(a, B) is uniformly dense on compacta in C(R?). O

The main result of this section is that enforcing bounds on the weights does not de-
stroy the universal approximation capability of a network as long as the activation func-
tion is superanalytic at some point with a positive radius of convergence. o € C(R)
is defined to be analytic at a € R with a radius of convergence r > 0 if there is an infi-
nite sequence of real numbers, {c,}, n > 0, such that for |z —a| <7, Y " ca(z —a)”
converges and o(z) = Y cp(z —)™ Furthermore, this analytic function o is defined
to be superanalytic at a with a radius of convergence r if for every n > 1, ¢, # 0. By
the next lemma, this superanalyticity property holds if ¢ is analytic at a with radius r

and ¢, # 0 for infinitely many n.

Lemma 2.1 If ¢ is analytic at a € R with radius v > 0, o(A) = > 07 cn(A—a)?

N —a|l <7, and ¢, # 0 for infinitely many n then for every b in a dense subset of

8A set A is dense in a set S if A C S and Cl(A) = S. The closure of a set A is defined as
Cl(A) = AU{Limit points of A}. A point p is a limit point of A if every neighbourhood of p contains
a point g # p such that g € A.

9For example, rational numbers are dense in irrational numbers. That means between any two
irrational numbers there is a rational one or alternatively any irrational number can be approximated

within any desired tolerance with a rational number.

30 2.2 Universal Approximation Property of CWNs

(a —r,a+r), ois superanalytic at b with radius of convergence s = min{b — (a — r),

(a+7)—b}. O

Some examples of functions that are superanalytic almost everywhere are sine, cosine,
logistic, and hyperbolic tangent functions. Finite polynomials are examples of functions

which are analytic but not superanalytic.
The statement of the main result:

Theorem 2.2 If for some a € R, o € C(R) is superanalytic at a, with radius of
convergence v > 0, then N0, B) is uniformly dense on compacta in C(R?) for any

B > max{|al, 1}. O

The activation functions are required to be superanalytic so that they can be repre-
sented as an infinite power series containing all powers of x. This ‘infinite and complete
polynomial’ nature of these function makes them dense in all continuous functions.

The next theorem allows further restrictions on the weight values without sacrificing
the universal approximation characteristic. The input layer synaptic vectors w; can be
confined to the unit sphere S¢ at the expense of limiting the superanalytic activation
functions to those whose derivatives form a basis for the continuous functions. This is
due to the Stone-Weierstrass theorem'? which implies that the set of polynomials in o
— which in the present case is formed by the derivatives of ¢ — is uniformly dense in
C(R).

The following theorem uses the term span of a class of functions. For any function
f € C(R) and r > 0, f|(—r,7) denotes the restriction of f to the interval (—r,r), and for
any set of functions F, F|(—r,r) denotes {f|(—r,7): f € F}. For any F defined on a
set O, the span of F, sp(F), denotes the closure of the set of finite linear combinations

of elements of F in the topology of uniform convergence on compact subsets of O.

Theorem 2.3 If the conditions of Theorem 2.2 hold and w; € S U {0} then N'(o, B)

is uniformly dense on compact subsets of (—r,r) in sp({c®|(=r,r) : k > 0}) for

108¢ee Appendix A for a statement of this theorem.

31 2.3 Convergence of Error Backpropagation

any B > 1 where o®) is the k-th derivative of o. If in addition sp({c™|(=r,r) :
k> 0}) = CR)|(=r,7) then for w; € STU {0}, N0, B) is uniformly dense on

compacta in C(R?). O

Theorem 2.3 states that the superanalyticity requirement for ¢, although necessary,
is not sufficient for universal approximation if synapstic vectors in the input layer are
restricted to the unit-sphere. Consider the case of sine function, which is superanalytic
everywhere except at 0, but the span of its derivatives is not dense, and therefore
uniform approximation by N'¢(o, B) with input-layer synapses on the unit-sphere fails.
This can be easily illustrated in the 1-dimension case. Let o(-) = sin(-) and consider
the set

q
Nlsin,8Y) =< f: f(z) = wasin(:l:x+9j), 1<j<n,neN, §;eR
j=1
By the addition formulas for the sine function, any such f must be of the form ¢; sin(z)+
c9 cos(x) for some ¢y, co € R. This set of functions, A (sin, S1), is clearly not dense on
compacta in C(R), being unable, for example, to universally approximate sin(20x) on
[—1,1].

An application of Theorem 2.3 provides the following very useful result:

Lemma 2.2 If o is the logistic function then for w; € S4U {0}, N0, B)is uniformly

dense in compacta in C(R?).

A similar application of Theorem 2.3 will be used in Chapter 5 to prove the universal

approximation property of the multiplier-free net.

2.3 Convergence of Error Backpropagation

The error backpropagation heuristic for training feedforward networks, the method of
choice for many users, is not a completely new training procedure: the batch version
is known as (total) gradient descent [94], the on-line version is familiar to statisticians
as stochastic gradient descent [156], and the momentum modification of the batch

version can be recognised as the ‘heavy ball’ method discussed in the numerical analysis

32 2.3 Convergence of Error Backpropagation

literature [126]. The convergence characteristics of BP can be empirically analysed by
the Monte Carlo techniques [122] or theoretically by various statistical and numerical
analysis tools. The theoretical results presented in this section will comment on the form
of permissible cost functions, and the effect of the learning parameters on convergence
to a solution.

Tesauro et al. [139] have examined the asymptotic behaviour of the batch version of
BP in terms of the decrease in error with respect to the number of epochs ¢. This study
found the error to decrease as 1/t for large ¢. It is also shown that best convergence
was achieved using logistic activation function in the hidden layer. In terms of learning
parameters, it was found that for a constant learning rate, the rate of convergence is
unaffected by the addition of a momentum term or addition of the margin heuristic!!
to the BP learning procedure. Moreover, the results showed that convergence rate can
be increased by adapting the learning rate with respect to the second derivative of the
error surface.

From the classical steepest descent results, it is known that the batch version of
BP converges to a solution for a fixed learning rate. The on-line version with a fixed
learning rate, however, starts to wander around the error surface as the error becomes
small and does not settle into a stable solution. A diminishing learning rate is the
weakest requirement for on-line BP to settle down [155]. White [155] views on-line BP
as ‘an application of Robbins-Monro stochastic optimisation procedure [118] to solve
the first order conditions for a nonlinear least squares regression problem’. He considers
a sequence of independent, identically distributed, and bounded training examples, and
bounded and twice continuously differentiable hidden layer activation functions. This
study concludes that on-line BP converges with probability 1'2 for successive values
of the learning rate ny, 1441, ... if gy xt77, 0 <v < 1.

Kuan and Hornik [74] investigated on-line BP learning with a small, constant learn-

HError in the output of a neuron is not backpropagated if it is within a specified small margin.
'21f {4, } is a sequence of random variables then G, converges with probability 1 to a, i.e. é, — a
lim

. P=1 . R
as n — oo or a, — a, if a,,_ch[an = a] =1 for some real number a. Also known as almost sure

convergence, convergence almost everywhere, and strong convergence [155].

33 2.4 Summary

ing rate. They considered the weight update steps as an interpolation process and
analysed this process by associating an ordinary differential equation (ODE) with it
and by studying the asymptotic behaviour of the solutions of the ODE. The asymptotic
study of the behaviour serves only as a ‘first order approximation’ to the algorithm.
They made two assumptions about the learning procedure: first, all training examples
are bounded and the sequence of examples is strongly stationary!® and ergodic!*
Secondly, the cost function is continuously differentiable with respect to weights and
training examples!® This result of this study indicates convergence in probabil-
ity'® for the BP procedure. This convergence in probability result is weaker than the
‘convergence with probability 1’ result, and means that convergence to optimal weights
in most training runs is expected but not guaranteed in general for on-line BP with a
small constant learning rate [74].

The discussion in this section has so far been about networks converging to a min-
imum in the error surface: this minimum can be a local one or a global minimum. A
modified version of on-line BP with a diminishing learning rate has been proposed for
finding global minima, the modification being the addition of decreasing amounts of
random noise to the weights at each weight modification step [75]. This procedure is
similar to simulated annealing and is guaranteed to converge with probability 1 to a

global minimum.

2.4 Summary

The two key results of this chapter were:

13Tf a random variable X is strongly stationary then the distribution of X (t) is the same for all times
t [45].

M A random process is ergodic if its ensemble and temporal averages are the same.

Y The cost function, e.g. the one shown in Equation 1.1, depends upon the output of the network,
which, in turn, is a function of the activation function o (-), which transform the x - w + 0 terms. This
condition is satisfied if all o(x - w + @) terms are continuously differentiable for all x, w, and 6.

161§ {an} is a sequence of random variables then G, converges to a in probability, i.e. an i) a, if
there exists a real number a such that for any € > 0, P[|a, —a| < €] = 1 as n — co. Also known as

weak convergence [155].

34 2.4 Summary

First, a feedforward network having hidden layer activation functions that are super-
analytic and these superanalytic activation functions having derivatives that form a
basis for the continuous functions, can have input layer weight vectors restricted to the
unit-sphere without sacrificing its ability to approximate all continuous functions to

any desired degree of accuracy.

Secondly, the BP learning heuristic with a small constant learning rate converges in
probability to a solution as long as the cost function is continuously differentiable with

respect to weights and training examples.

Integer Weight Networks

3.1 Why Integer Weights?

Compared with their continuous-weight counterparts, feedforward networks having in-
teger synapses and offsets are easier to implement in electronics as well as in optics.
For example, integer weights in the range [—3, 3] can be represented by just 3 bits. This
property reduces the amount of memory required for weight storage in digital electronic
implementations. It also simplifies the digital multiplication operation as multiplying
any number with this 3-bit weight requires a maximum of three basic instructions — one
shift, one add, and one sign-change. Moreover, if the inputs are restricted to the set
{—1,1}, the neurons in the first hidden layer require only sign adjustment for multipli-
cation operations, and only integer addition. The activation function of these neurons,
e.g. hyperbolic tangent, can be accurately' implemented by using a lookup table with
only 4 entries augmented by sign adjustments. For binary bipolar inputs, the addition
and multiplication operations in the output layer neurons of a 2-layer network are not
as simple as that for the hidden ones, but can be streamlined, keeping in mind the

limited number of possible output levels of the hidden neurons.

"With an approximation error which is always less than 0.5%.

35

36 3.1 Why Integer Weights?

In analogue implementations, where weights can be stored as resistances, the in-
teger weight scheme requires only 3 distinct resistance values, which streamlines the
manufacture by avoiding the expensive trimming schemes required to achieve the pre-
cise resistances for conventional networks. The presence of zero valued weights also
simplifies the design of analogue hardware.

In optically implemented networks, where weight values can be represented as grey-
scale masks or voltage levels for spatial light modulator, the complexity of implemen-
tation is again reduced because of integer valued weights.

These features of the Integer-Weight Network (IWN) make it very attractive for
efficient hardware implementation. It should, however, be stressed here that these
benefits are valid only when the IWN has been trained, as the learning task still re-
quires high-resolution arithmetic. This makes the IWN unsuitable for in-situ learning.
Moreover, a high-resolution activation function is required during training and for the
trained network.

IWNs may have some performance related benefits besides the obvious hardware
implementation advantage. For example, the integer-weight learning procedure pro-
posed in this chapter generates networks with some weights having a value of zero.
The number of these zero-valued weights is higher if larger-than-optimal TWNs are
used for training. The reduced number of effective weights, combined with the fact
that all non-zero weights are restricted to only six values, limits the complexity of the
network. This can result in reduced over-fitting and therefore improved generalisation

performance: it is known from shrinkage?® estimation and ridge regression®

analysis
in linear models that generalisation can be improved by reducing the size of the weights
from estimates that give best fit in the sample [128]. The case of restricting the weights

to small integers is most similar to penalised ridging, in which the cost function is

2The difference between training set accuracy and the test set accuracy.

3The precision of least-squares estimates gets worse with an increase in dependence between the
input variables. Ridge regression estimators are more precise in those situations and are obtained as
the estimators whose distance to an ellipsoid (the ‘ridge’), centred at a least-squares estimate from the

origin of a parameter space, is a minimum [46].

37 3.2 Discrete-weight Networks

Table 3.1 Weight resolution terminology

Weights Bits

Low resolution 1-4
Medium resolution 5-16
High resolution 16+

augmented by a penalty term? [130].

Another potential advantage of the IWN is its relatively immunity to noise in train-
ing data. The IWN only captures the main features of the training data in its discrete-
valued weights. The low amplitude noise present in the training data cannot perturb
the discrete weights, because these weights require relatively larger variations in order
to jump from one discrete value to another?

This chapter provides experimental evidence that feedforward networks with low-
resolution discrete weights are a viable alternative to networks having continuous
weights. These discrete-weight networks, although lacking the universal approximation
capability, can implement learning tasks, especially classification tasks, to reasonable
accuracies. After highlighting the hardware implementation advantages and justifying
the choice of discretisation scheme, this chapter presents one of the two main contribu-
tions of this thesis — the integer-weight learning procedure. Only the preliminary results
on the functionality tests of this procedure will be presented in this chapter. The main
results on generalisation performance will be held back until Chapter 6, where they will

be contrasted with those for continuous-weight networks and multiplier-free networks.

3.2 Discrete-weight Networks

Most of the experimental work on feedforward networks is based on weights of high res-

olution (see Table 3.1). There has been some work on networks with medium resolution

4The other two types of ridging are constrained ridging, in which some norm of the weights is
constrained to a specific value, and smoothed ridging, in which noise is introduced in the inputs [130].

SExamples indicating such a behaviour will be presented in Section 6.5.2.

38 3.3 The Hidden Neurons -vs- Weight-Depth Trade-Off

weights but very little on ones with low resolution weights. Various claims have been
made about the minimum b,, required to learn problems of varying complexity, but no
generally agreed standards exist [33,58,60,77,88,89,112,138,148,166,167,169]. Most
workers, however, agree that networks with weights of medium resolution are adequate
to model many learning tasks to the desired accuracy [33,169], [58, 60,112,166, 167]°
. The networks with low resolution weights have mostly been considered by the work-
ers who were interested in streamlining the multiplication operation in neurons. They
considered weight values that were either powers-of-two [77,138]® or sum-of-powers-of-
two [88,89]%. For such weights, multiplication operations can be replaced by much
simpler shift operations or a sequence of sum-and-shift steps, respectively.

Results on some very simple leaning tasks with feedforward networks having binary
and ternary weights were presented by Perez Vincente et al. in [148]. There is, how-

ever, a wealth of literature available on single-layer perceptrons with binary weights

(e.g. [147]).

3.3 The Hidden Neurons -vs- Weight-Depth Trade-Off

In selecting the architecture (i.e. complexity) of a feedforward network, the designer has
to make choices about two information resources — the number of hidden neurons, ¢, and
weight depth, b,,. The combination of these two must match or exceed the complexity
of the learning task at hand. In general, the two can be traded off with one another
to achieve a desired level of error at the output of the network. This trade off process,
however, does have its limits — one neuron with weights of infinite resolution cannot
implement most mappings, and a network with only single-bit weights may require
a prohibitively large number of neurons to implement many mappings. Therefore,
the combination of ¢ and b, the network complexity, is not a linear function of its
components [22]. The optimal combination of these two parameters to implement a
desired network complexity may or may not be unique. General methods to find the

optimal combination are not currently available. An attractive option would be to

SThe results of these papers were based on discrete weights as well as discrete activation functions.

39 3.4 Approximation Capabilities

dynamically vary ¢ and b, during training to find their optimal values. Currently,
many sets of heuristics exist that dynamically modify ¢ (e.g. Cascade-correlation [37]),
but the author is unaware of any work in which just b,,, or both ¢ and b,, simultaneously,

were varied during training.

3.4 Approximation Capabilities

It has been pointed out by Wray and Green [165] that the very fact that feedforward
networks are implemented in software/hardware on computers of finite word-lengths
implies that the hidden-neuron activation functions are finite polynomials! and are
therefore not capable of universal approximation, as was shown by Leshno et al. in [83].
Does this statement mean that the universal approximation results of Section 2.2 do
not have any practical significance and are useful only as a theoretical curiosity? The
significance of the universal approximation results is in the guarantee they provide —
for any desired degree of precision, a realisable network exists that can achieve that
degree of precision. The choice of machine word-length limits only the upper limit on
the achievable degree of precision.

The choice of machine word-length controls both b,, and the precision of the net-
work’s activation functions. It can be demonstrated that even if a network’s activation
functions were non-polynomials, the limitations imposed by bounded discrete weights
are enough to destroy its universal approximation capability. This can be easily demon-

strated by the argument that the set of basis functions,
Z = {wa(Wi 'X—l-ei)}

where w?, w;, 0; € {finite subset of Z}, is a finite set. As Z is finite, it cannot be dense

in C(R?) for any d. Hence:

An IWN, or any feedforward network having bounded and

discrete weights only, cannot be a universal approximator.

"In the case of analogue computers, their inherent inaccuracy due to imperfections in fabrication

and fluctuation in operating conditions result in similar problems [106].

40 3.5 Learning Heuristics

This means that IWNs may not be able to learn every given mapping with arbitrary
accuracy. This is quite a drawback! On the other hand, it is always useful to try to
model a given mapping with integer weights. If the results do meet the desired level of
accuracy then all the benefits of networks having low resolution weights are at hand.
If, however, the results are not as desired then weights of a finer resolution can be
employed. This increase in resolution can be repeated to obtain the desired level of
performance. The increase in resolution and non-integer discrete weights will be further
discussed in Chapter 4.

The above discussion points towards the suitability of IWNs for learning pattern-
classification tasks as opposed to function approximation ones. This is due to the fact
that the error tolerance requirements for function approximators are usually less flexible

as compared with those for pattern classifiers.

3.5 Learning Heuristics

It was stated in Section 1.6 that loading a perceptron with integer weights is NP-
complete and loading a fixed architecture CWN is also NP-complete, hence loading an
IWN should be very difficult, which indicates that the mean number of learning epochs
for IWNs should be quite large compared with that expected for the comparable CWNs.

While selecting a set of heuristics for training a network, a choice has to be made
between gradient descent and stochastic techniques, as was discussed in Section 1.8.
For CWNs the choice is usually quite clear because gradient descent has been found
to be quite effective on most learning tasks discussed in the literature. Stochastic
techniques are generally used for learning tasks for which the error surfaces are perceived
to be particularly ‘choppy’ and full of local minima. The other advantage of stochastic
methods is that they do not involve the computation of gradients, which from the
hardware implementation point of view, can be a very expensive task.

The integer-weight learning heuristics proposed in this chapter are mainly based
on gradient descent. In the initial versions of the collection, they were just that, but

later some stochastic flavour was added to enhance the probability of convergence to an

41 3.5 Learning Heuristics

acceptable solution. Other modifications were also applied to improve implementation
efficiency. The feature unique to the design of discrete-weight networks is the selection
of the weight discretisation scheme: the discretisation can be either uniform or non-
uniform. It can be selected before training, during training, or at the end of training. A
choice has also to be made about the initialisation of weights: should they be discrete
or continuous? In either case, what should be their initial distribution?

These choices, combined with the choices about the size of the hidden layer, the
neuron activation function, and the frequency of weight updates, make the task of
designing efficient learning heuristics particularly difficult. Keeping this in mind, it
was decided from the very beginning to concentrate on designing heuristics that will
get the job done in a reasonable number of epochs and the task of achieving the fastest

convergence times was therefore not considered at all.

3.5.1 Weight Discretisation Schemes

Networks having powers-of-two weights represent an interesting discretisation scheme
for digital implementations [76,77,138]. They have the advantage in arithmetical ma-
nipulations — multiplying a number with a power-of-two weight can be accomplished by
a simple shift operation on that number, which is faster and requires much less hardware
than the conventional digital multiplier. In this scheme, only the synapses have to be
power-of-two, the offsets can still be real numbers as they are never involved in multipli-
cation operations. A variation on this scheme — simple sums of powers-of-two weights —
can provide better resolutions while somewhat maintaining the ease of multiplication:
multiplying a number with a sum-of-power-of-two weight can be accomplished by a
short sequence of simple shift-and-add operations [88,89]. These two schemes and the
related learning procedures were inspired by similar hardware streamlining work on
FIR filter design [170].

Another possible avenue is to take a trained CWN, and analyse its weight dis-
tribution to find any clusters. After determining an appropriate number of clus-
ters depending upon the desired number of discretisation levels, the weights in each

cluster are assigned to the centre value of the cluster. The discretised network is

42 3.5 Learning Heuristics

now tested and if the performance is below par, then it is trained again and the
clustering—discretisation—testing—training sequence is repeated until a satisfactory
result is achieved. This method results in weights which are non-uniformly discre-
tised through a problem dependent multiple-thresholding discretisation function. This
technique, sans clustering? was evaluated by Fiesler et al. in [40]. The authors claimed
their results to be quite encouraging. They did not, however, provide much information
about the complexity of the benchmark learning tasks.

The most popular learning scheme is just to use medium resolution weights through-
out training [33,58,60,112,166]. In this scheme the network is trained with a preselected
by on the target learning task. If learning to a desired level of accuracy is not accom-
plished then training is restarted with an increased b,,.

The prototype set of low resolution weights used in this chapter is {—3, -2, -1,0,1,
2,3}. The choice of integers as discrete weights was made due to their ease in arith-
metical manipulations, and the range was restricted to 3 because it required the lowest
number of bits for which trained networks gave acceptable performance on a set of
benchmark learning tasks. In the preliminary experiments, networks with 1-bit and
2-bit weights did not learn the target tasks to acceptable tolerances, and therefore were
eliminated from further study. The weight set {—2,—1,0,1,2} was not considered be-
cause it required 3 bits/weight for storage without utilising the full dynamic range of
3 bits. The eighth available level in 3-bits was not used because of the fear that an
asymmetric set of weights may result in poor learning performance. It should be noted
here that the selected set of integer weights are easily expressible by simple sums of
powers-of-two, and therefore require at most a single shift, a single sum, and a single

sign-change instruction to accomplish the multiplication operation.

3.5.2 Discrete-weight Learning Techniques

The simplest approach taken for forming networks with discrete weights is to truncate
bits from the weights of a network trained with high resolution weights. This is based on

the suggestion that numerical algorithms require temporary ‘guard bits’ on each weight

8They used a static and uniform discretisation (stair-case like) scheme instead.

43 3.5 Learning Heuristics

during training, and these guard bits, though essential during training, do not affect
the network’s performance if removed after it has been fully trained [30]. Based on this
idea, a multiple-thresholding method has been proposed for generating discrete-weight
networks [28,164]. In this simple method, the continuous weights of a fully trained
network are discretised using a staircase function. This technique was used by Chieueh
and Goodman for training with ternary weights [28] and it was found that a large
percentage of the resulting networks failed to perform correctly when the weights were
discretised. This was a rather drastic example of the truncation technique. Truncating
the last bit or two of high-resolution weights should give more reasonable results.

The Continuous-Discrete Learning Method [40] follows a more fruitful strategy. In
this method, a trained CWN is discretised according to a predetermined stair-case
function, and then trained again using the standard BP procedure. The discretisation-
training cycle is repeated until the network converges to a satisfactory solution. The
authors claimed the results to be quite encouraging. They did not, however, provide
much information about the complexity of the benchmark learning task. The fun-
damental assumption behind this learning scheme is that the locations of acceptable
minima for discrete-weight networks and CWNs are the same. This author is, however,
unaware of any evidence, theoretical or experimental, which supports this assumption.

The method put forward by Marchesi et al. [88,89] for generating networks with
powers-of-two or sum of powers-of-two weights and unrestricted offsets uses a trained
CWN as the starting point. Its weights are discretised and then a modification of BP
is used for further training: the modification being that the weights are updated only
if the new weight is also an allowed discrete value. This training method will surely get
trapped in shallow local minima because the update rule does not account for a long
sequence of very small BP weight changes.

Weight perturbation is an alternative to the BP learning procedure and can be used
for discrete-weight learning. In this method, all of the weights are perturbed in turn

and the associated change in the output of the network is used to approximate local

44 3.5 Learning Heuristics

gradients [59]. The weight update rule for this technique is:

Aw — _T’Eoinitial - Eoperturbed — _T’ (31)

Winitial — Wperturbed ow

This technique, although not as efficient as BP, requires only feedforward calculations
for its operation, which simplifies its implementation in hardware [166]. It does, how-
ever, have two major disadvantages: a) the effect of changes in the input layer weights
on the output is relatively small and therefore difficult to measure accurately; b) the
computational complexity depends more strongly on size than in standard BP [33] as
FE, has to be recalculated after each weight is updated. A modification of this method,
the Chain Rule Perturbation (CHRP) technique [59], overcomes both of these draw-
backs. This technique uses Equation 3.1 for updating output layer weights. It then
perturbs a hidden neuron output by du to determine AE/du. All weights feeding into
that hidden neuron are then simultaneously perturbed to compute Au/dw. The com-
bination of these two measurements is then used to update the hidden-layer weights as
follows:
AE, AE, Au;

Aw;; = — - _ 3.2
Wij nAwij K duj dwgj (3.2)

CHRP is advantageous in that the two derivatives of Equation 3.2 can be calculated
more accurately compared with the only derivative of Equation 3.1, especially when
that derivative has a small value. It also has the added benefit of semi-parallel op-
eration compared to the strictly serial updating procedure of Equation 3.1 [59]. For
learning with discrete-weights, this method can be restricted to take discrete steps only.
This learning technique is very suitable for on-chip implementations. It lacks the math-
ematical efficiency of BP however, and therefore requires a large number of epochs to
reach acceptable solutions.

The ‘backpropagation with quantisation’ technique, put forward by Dundar and
Rose, uses BP for learning until the network reaches the ‘paralysed’ stage of a local
minimum — the BP weight updates are too small to change weights from one discrete
value to another. It then ‘jolts’ the network out of this condition by incrementing
weights with the larger updates to the next discrete level [33] depending upon the

comparison between the sum of the last k updates and a user selectable threshold. This

45 3.5 Learning Heuristics

scheme needs to be augmented with some stochastic mechanism because in its current
form, although it does take care of the static paralysis i.e. no changes in weights, it
could result in a dynamic paralysis in which weights are ‘jolted’ back and forth between
two values.

Stochastic techniques like simulated annealing [69] can also be used to train CWNs
or discrete-weight networks. These techniques have the advantage of global optimisa-
tion — they search for global minima in error surfaces, and do not get stuck in local
minima, as BP can. Stochastic techniques have the added advantage that they do not
require gradient computations, which is very attractive from the hardware implemen-
tation point of view. The main drawback of this class of techniques is their speed.
They generally require a large number of epochs for convergence and each epoch gen-
erally requires the recalculation of F, for every training example and every weight
modification.

Combining the gradient-descent based and stochastic steps can also be fruitful.
The Combined Search Algorithm [166] algorithm is an example of such an approach.
It uses BP to search for solutions, and stochastic steps to jump out of shallow local
minima. The stochastic step, termed as the Partial Random Search (PRS), involves
the replacement of a single weight with a random number selected uniformly from a
predetermined range. If this replacement decreases the output error then it is made
permanent; otherwise the weight is restored to its original value. The main problem
with this method is that every single weight change caused by PRS requires the time
consuming recalculation of E, for the whole network.

Hoehfeld and Fahlman used the gradient-descent based Cascade-correlation onto-
genic method combined with probabilistic rounding for training networks with medium-
resolution weights [58]. If the Aw calculated by gradient-descent was smaller than the
minimum discrete step then the relevant weight was incremented according to a prob-
ability proportional to the size of Aw. This technique showed promising results on
test problems of reasonable complexities. Those results were, however, for medium-
resolution weights only.

All of the above methods either can start or do start with a trained CWN as the

46 3.5 Learning Heuristics

initial point. In starting with a trained CWN, the designer is hoping that the error
minimum found for the CWN is the same, or is very close to, the one for the desired
discrete weight network. This may or may not be the case in general, especially for
networks with complex error surfaces. In such cases, it is better to start looking for
a discrete solution from the very beginning of the training phase. A start can be
made with an untrained network with its weights randomly initialised to small discrete
values according to some random distribution and use one of the many stochastic
optimisation techniques for training. This procedure is very useful for those silicon
implementations which require on-chip learning, because the absence of continuous
weights and of backward propagation of errors simplifies the design immensely.

The integer-weight learning procedure presented in this chapter uses the gradient
descent heuristic for both output error minimisation and weight discretisation. The
procedure minimises both error in the output of the network, F,, and the weight
discretisation error, E,,, simultaneously. Each weight modification is a simple sum
of the independently calculated updates which minimise each of the two errors. The
learning cycle is stopped only when E,, becomes zero and F, reaches an acceptable

level.

3.5.3 Integer-weight Learning

An outline of the new integer-weight learning procedure will now be presented. The
procedure starts by initialising the network with small continuous weights selected ac-
cording to a uniform random distribution. The conventional on-line BP algorithm is
used for the minimisation of the error in the network’s output. A new weight discreti-
sation mechanism is superimposed on this BP procedure. This weight discretisation
mechanism minimises the difference between weights and a static weight discretisation
function Q(w) in the mean-squared sense. Therefore, the combined error function to

be minimised is:

E(W) = E0<W) + Ew<W)

= D lt—of + > [Qw)—ul (3.3)

all outputs all weights
all examples

47 3.5 Learning Heuristics

Qsin (UJ)

3t

3
Quann(w) =Y _ tanh[3 (x + 2i — 3)]

1=0

Figure 3.1 Two choices for the discretising function Q(w) [84].

48 3.5 Learning Heuristics

Table 3.2 Integer-weight learning

Initialise weights in the range (—0.5,0.5)
Select example
Select a weight, w
W~ w — 7783%
w4 w — X(Qrann(w) — w) (39%77;:(10) _ 1)
Loop

Loop until £, < e and F, =0

The choice of Q(w) is critical for the efficient discretisation of weights. The two choices
that were considered are shown in Figure 3.1. The key feature of these functions is that
the zeros of (Q(w) — w) have the required integer values. In practice, the application
of these functions is restricted to the interval [—3, 3], since any weight values outside
this interval are truncated to {—3,3}. Of the two, Qianp(w) is computationally more
expensive to generate, yet it does have the advantage in having an adjustable slope
between discrete values. It also uses the same hyperbolic tangent function as the
neuron activation function.

The weight modification that can be used to minimise the combined error function

1s:

Aw = —Aw, — Awy (3.4)
OF,

Aw, = 3.5

wo =17 (3.5)
oFE,,
Awy = Y——
v X ow

= X<Qtanh(w) - w) (ag%,;(w) - 1) (3.6)

where y is the weight discretisation rate. A summary of the integer-weight learning

procedure is shown in Table 3.2.

49 3.5 Learning Heuristics

3.5.4 Convergence Properties

The above described integer-weight learning procedure is a modified version of the
conventional on-line BP procedure, the modification being the addition of a nonlinear
weight shaping function to the objective function. This modified objective function
contains a combination of hyperbolic tangent functions only. As the hyperbolic tan-
gent function is continuously differentiable, all the discussion of Section 2.3 applies.
Hence, integer-weight learning with a constant learning rate is guaranteed to converge
in probability to a solution provided that the sequence of training examples is strongly
stationary and ergodic. Convergence with probability 1 can be achieved by using a

sequence of diminishing learning rates.

3.5.5 Practical Considerations

The results on the initial trials with the integer-weight learning procedure were not very
promising. Many of the trial runs failed to converge even on simple learning tasks. The
number of epochs required for convergence to a solution was unacceptably large because
the weight values hovered around discrete levels for too long without actually reaching
them. This problem was mainly caused by the interaction of the error minimisation
and the discretisation mechanisms — the two mechanisms were nullifying each other’s
weight modifications which was resulting in learning paralysis. The learning procedure
was modified to improve its convergence efficiency. The following set of guidelines was
drafted for the design of the learning procedure keeping in mind the results of the initial

experiments:

The procedure must mainly be based on gradient descent to benefit from
the faster speed of that heuristic. It should, however, have a stochastic
component to account for the large number of local minima observed during
the initial experiments. The paralysis observed during the initial stages
of learning should be avoided by letting the BP mechanism dominate the
learning process when F, is large. The weight-discretisation mechanism can

have the upper hand when FE, is small. The weight-discretisation process

50 3.5 Learning Heuristics

should be augmented with a weight-rounding mechanism to overcome the
slowness of convergence when weights have ‘nearly discrete’ values. Lastly,
the non-critical but time consuming exact calculations should be replaced

by their approximate but faster incarnations.

Keeping these goals in mind, it was decided that the learning process should start
with little attention to weight discretisation: the discretisation mechanism should
slowly come into play as the network starts moving towards a solution, and should
become stronger with progress in learning. This was accomplished by computing a new
FE,-dependent y before each learning epoch: y was made exponentially dependent upon
the negative of F,.

Y= ay e Fo)bx (3.7)

where o, and 3, are empirical parameters, and e is the maximum acceptable value
of E,. This strategy did help in the initial stage of training but not during the inter-
mediate stage. The most likely reason was the formation of new local minima due to
discretisation. It is well known that the standard BP algorithm sometimes gets stuck
in local minima [122]. The superposition of the weight discretisation process on BP
can result in changes in the shapes of these minima [166] or even an increase in their
number. At the start of discrete-weight learning, F, is large, and the output error
minimisation process dominates. Conversely, the weight discretisation process has the
upper hand when FE, is small. At intermediate values of F,, the two processes may
nullify each other’s effect — resulting in a local minimum. To avoid this type of local
minimum, the weight discretisation process was augmented by a random perturbation
mechanism:

Aw,, Aw, tan(RND), (3.8)

where RND is a random number selected uniformly from (0,7/2). tan(RND) has a
small value most of the time but infrequently it can become very large (see Figure 3.2).
This perturbation strategy is akin to shaking a marble enclosed in a sealed box having

an unknown landscape, with the goal to move the marble to the global minimum in

51 3.5 Learning Heuristics

Frequency/Frequency(< 1)

10 15 20
tan(RND)

Figure 3.2 Frequency distribution of numbers generated by tan(RND).

the landscape without peeking inside the box? One way of accomplishing this goal is
to shake the box gently most of the time and vigorously for short bursts only. Shaking
gently will move the marble out of shallow local minima, and will not have any effect if
the marble is residing in one of the relatively deeper minima. A vigorous shake every
once in a while, will dislodge the marble from all but the deepest minimum. At the
end of many such gentle-vigorous shaking cycles, the marble will, with high probability,
come to rest in the global minimum.

The tan(RND) perturbation strategy was successful, except in cases where a dis-
crete-weight network with an unacceptably large F, was generated. The solution that
was adopted in those cases was to strengthen the E, minimisation process. This was
accomplished by temporarily boosting the value of 7 for one learning epoch.

The weight-discretisation process uses a mean-squared error minimisation heuristic.
The progress of this method is dependent upon the magnitude of the error. This
progress becomes painfully slow as the system becomes closer to a solution. To overcome

this problem, a rounding mechanism for weights with ‘nearly integer’ values was added

9This ‘marble in a box’ analogy is adapted from [43].

52 3.5 Learning Heuristics

to the discretisation process. This mechanism acts as a set of ‘black holes’ centred at
each integer value. If a weight falls within the black hole radius, p, its value is forced
to the centre value of the black hole. The radius was computed before each learning

epoch, and was made exponentially dependent upon the negative of F,.
pi=qy, ele=Fo)f (3.9)

where a, and [, are empirical constants.

As a finishing touch, the (Quunn(w) — w) (69’5“373(“)) - 1) term was replaced by
an easily computed approximation (w — Qprac(w)) (see Figures 3.3 and 3.4). Easier
computation is not the only advantage of the approximate term — it also provides
stronger ‘pull’ when a weight value is midway between two discrete level. On the other
hand, this approximation is contrary to the requirement of the convergence guarantee
of Section 3.5.4.

After making all of the above changes the final version of the Aw,, modification is:
Awy = ay ee=Fo)Bx (yy — Qprac(w)) tan(RND). (3.10)

A momentum term was added to the BP mechanism to strengthen F, minimisation

throughout the learning process.

OF,
ow

Aw, =1 — pAw,,, (3.11)

where Aw,,_,, is the Aw, calculated in the previous step. These weight modifications
and the black-hole mechanism are applied sequentially to generate the required IWN. A
summary of this more practical version of the integer-weight learning procedure is shown
in Table 3.3. A more detailed version of this procedure is available in Appendix B.
How does this new discrete-weight learning scheme compare with the ones discussed
in Section 3.5.27 It does not use the direct discretisation approach in which the extra
bits are removed through truncation which has been known to result in unacceptable
solutions. It does not make the assumption that the acceptable error minima for both
the IWN and CWN are located at the same location. It does look for the CWN minima
in the beginning, but gradually starts drifting toward an integer-weight solution. The

closer it gets to a CWN minimum, the harder it tries to go towards an integer-weight

53 3.5 Learning Heuristics

Qprac (U))

_3F

Figure 3.3 Q,,q.(w).

(Qrann(w) = w) (22522 — 1) and (w = Qprac(w))
0.5

| .
adad

Figure 3.4 Comparison of the actual error term and its approximation in the range [—3, 3].

/

—
/

54

3.5 Learning Heuristics

Table 3.3 Practical IWN learning

Initialise weights in the range (—0.5,0.5)

If E, =0 and E, > ¢ then boost 7 by a factor of k;, for just this epoch

Select training example

Select a weight, w

w—w — n% + pAw,,,,

W w — ayeC I (1 — Qpoc(w))tan(RND)

w <+ B(w)
Loop

Loop until £, < e and E, =0

3sgn(w)
B(w) = ¢ Qprac(w)

lw| > 3,
|Qp1“ac(w) - w| <p,

otherwise.

Figure 3.5 The black-hole function.

55 3.5 Learning Heuristics

solution. If E, starts increasing as the network moves closer to E,, = 0, the integer-
weight learning procedure changes direction and starts steering the network towards
another F,, = 0 solution. It uses direct measurements of the error surface’s local gra-
dient for calculating weight updates instead of inferring it from indirect measurements.
It does not require the expensive recalculation of F, for every weight adjustment. Its
error minimisation mechanism is based on gradient descent, which, on many problems
of interest, is quicker than one based on a purely stochastic process. It does, however,
have a stochastic mechanism to avoid getting trapped in local minima. Its rounding
mechanism, the black hole function, is superficially similar to the probabilistic rounding
of Hoehfeld and Fahlman. In fact, the black-hole mechanism is more effective, in that
it adapts its strength according to the value of E,. Moreover, if a weight gets trapped
in a black hole, it can only come out due to a very strong push by the BP mechanism.

The main implementation drawback for integer-weight learning is the time consum-
ing calculation of the perturbation term in Equation 3.8, tan(RND). This term has
to be recalculated before the update of each weight. This term is required to perturb
the TWN out of the learning paralysis caused by the mutual cancellation of the BP up-
date and the weight-discretisation modification. It was determined experimentally that
tan(RND) worked better than just RND. This may be due to the fact that tan(RND)
has a small value most of the time but infrequently it can become very large (see Fig-
ure 3.2). These large but infrequent perturbations can force the IWN out of learning
paralysis. Because of its random nature, tan(RND) can sometimes take the network
far away from the E, minimum, but BP is there to pull the reins and get the network
back on course quickly.

The discussion on integer-weight learning was mainly focused on the optimisation
of the discretisation mechanism and not on the optimisation of the F, minimisation
mechanism. Only a simple F, minimisation method, i.e. BP, was considered. This was
done to streamline the experiments and to concentrate on the study of interaction of £,
minimisation and F, minimisation in the simplest possible, but workable, framework.
Many FE, minimisation algorithms are available, which although superior to BP in

performance on many learning tasks, always require more learning parameters, and

56 3.6 Functionality Tests

hence complicate the design of learning experiments by a great deal.

There is wealth of literature available on efficient F, minimisation techniques (see [5]
for a survey). Many of these techniques are 2"d-order methods — they use information
about the 2% derivative of the error function E,(W) to compute weight modifica-
tions. The weight changes made by the discretisation mechanism, however, destroy
the 2"-order information at each step, making the superpositioning of the F, and E,,

minimisation mechanisms impractical.

3.6 Functionality Tests

A set of three learning tasks was used for testing the functionality of the integer-weight
learning procedure — XOR and two encoder/decoder problems. The XOR problem
was selected because of its historical significance and due to the fact that it was the
easiest non-trivial learning task. The encoder/decoder problems, 4:2:4 and 8:3:8, were
selected because of their closeness to ‘real world’ pattern classification tasks — small
changes in the input pattern cause small changes in the output pattern [35]. A d:q:d
encoder/decoder, normally with ¢ < d, is an auto-associator, with the number of binary
training patterns equal to d, each d-bit pattern consisting of all but one bit ‘on’ at a
time. During the learning phase, the encoder/decoder tries to find an efficient encoding
of the input pattern so that it can be squeezed through the hidden-layer bottleneck
without any loss of information.

Feedforward networks with offsets and hyperbolic tangent activation function in
both the hidden and output layer neurons were used for these simulations. The training
data was scaled to the range [—1,1]. These simulations involved clean data therefore
the Lo-norm, E, , was used as the error function: training was stopped when E, was
less than a prespecified ¢ and all the weights had reached integer values. The values of
the discretisation parameters, a,, 3y, a,, and (3,, were empirically determined and were
found to be problem insensitive. The selected values for these coefficients are shown

in Table 3.4!° The network was reinitialised if it did not converge to a satisfactory

10These same values were used for all of the simulations discussed in this thesis.

57 3.6 Functionality Tests

Table 3.4 Values of weight discretisation parameters

Parameter « 15}

Weight discretisation rate, y 0.001 16

Black hole radius, p 0.1 6

Table 3.5 Comparison of CWN and IWN Learning epochs

Problem Config. Network Min. Max. Avg. Median

CWN 9 127 32 22

XOR 2:2:1
IWN 10 7 33 26
CWN 7 31 14 12

Encoder/Decoder-4 4:2:4
IWN 7 71 20 17
CWN 75 1241 269 172

Encoder/Decoder-8 8:3:8
IWN 131 808 332 294

solution within a fixed number of epochs, Cg.

25 simulations were performed on each the three learning tasks!! The results are
displayed in Table 3.5. The number of IWN learning epochs is higher compared with
the ones for CWN for all three learning tasks. Because of the constraints on its weights,
the IWN possesses a limited number of possible functions that fit the learning task,
whereas the CWN possesses an infinite number. During the learning phase, the network
iteratively checks the suitability of various possible functions on the data to be learned.
The CWN reaches an appropriate function very quickly. The IWN, however, has a
more arduous route to follow: it has to not only check the fitness of the functions on
the learning task at hand but on closeness to the discretisation objective as well. This
double checking, combined with the strictness of the second objective, results in longer
training times.

Table 3.6 shows the performance results for the direct discretisation of the weights

HThe training parameters for this and all other sets of simulations discussed in this thesis are

available in Appendix B.

58 3.7 Discussion

Table 3.6 Direct discretisation to integer weights of trained CWNs of Table 3.5

Problem Successful Discretisation
XOR 16%
Encoder/Decoder-4 20%
Encoder/Decoder-8 0%

of the trained CWNs of Table 3.5. The weights were discretised to integer values
{=3,-2,-1,0,1,2,3}. The results indicate that the easier problems, signified by the
smaller number of learning epochs, are more suitable for direct discretisation. The very
poor performance of this direct discretisation experiment confirms the conclusions of
Chieueh and Goodman [28].

The reason for testing the integer-weight learning procedure on these three simple
problems was to check its functionality and to fine tune the learning parameters by
monitoring the interaction of the E, minimisation and the weight-discretisation mech-
anisms. The fine tuning was made tricky due to the presence of the many adjustable
parameters. An exhaustive study of the effect of variations in parameter values was not
attempted because of the sheer magnitude of the task. Instead, the values of the weight
discretisation parameters were frozen after some initial experiments and only the BP
learning rate 1 was used as the control parameter. The values of u and ¢ were also kept
constant for these simulations and for those in Chapters 4 & 5 and were varied only

for the experiments of Chapter 6.

3.7 Discussion

The integer-weight discretisation scheme proposed in this chapter has a definite hard-
ware implementation advantage. Although the powers-of-two weights are more attrac-
tive from the multiplier design point of view, they lack the uniform distribution of
simple integers, and therefore have a weaker ability of expression. This new scheme
does not contain any problem dependencies. Problem dependent schemes result in more

compact solutions but lack the generality of the uniformly distributed integer weights.

59 3.7 Discussion

The maximum magnitude of the integer-weights was restricted to 3 to make them ex-
pressible by 3 bits only. This was done because the initial experiments with 2-bit and
1-bit weights were not successful on the three test problems.

The new integer-weight learning procedure starts off like conventional BP, but be-
comes more and more discretised in its behaviour as the network gets closer to an error
minimum. It does look for the CWN minima in the beginning, but gradually starts
drifting toward an integer-weight solution. The closer it gets to a CWN minimum, the
harder it tries to go towards an integer-weight solution. If E, starts increasing as F,,
approaches zero, the integer-weight learning procedure changes direction and starts to
move towards another E,, = 0 solution. Mainly based on steepest descent, it does,
however, have a perturbation mechanism to avoid getting trapped in local minima. Its
weight rounding mechanism, the black hole function, adapts its strength according to
the value of F,. If a weight gets trapped in a black hole, it can only come out due to
a very strong push by the BP mechanism.

This integer-weight learning procedure was found to work well on the three simple
learning tasks. These tasks were used to monitor the behaviour and interactions of
the various mechanisms present in the learning procedure. Experiments with these
tasks were valuable in the fine tuning of the learning parameters. Only the preliminary
work with this learning method was presented in this chapter. The more meaningful
generalisation-performance results will be discussed in Chapter 6, where a comparison
with the performances of CWNs and multiplier-free networks will also be presented.

IWNs require high-resolution arithmetic during the training phase. This makes
them unsuitable for in-situ learning. Many commercial neural network applications (for
example [135]), however, do not require in-situ training. The number of training epochs
for IWNs is generally higher than for CWNs. This is not a major drawback because
in many practical applications [159] the learning period occupies only a small fraction
of a network’s lifetime usage. When products incorporating such applications are mass
produced, e.g. a neural network controlled microwave oven!? the length of training

time becomes a completely insignificant part of the combined design and manufacture

2Sharp Logicook microwave oven Model R-4N76.

60 3.7 Discussion

process.

Another practical issue has to do with input and output variable scaling. In a
conventional feedforward network, the scaling of inputs is not compulsory, as the weights
can do the scaling automatically during training (although taking more learning epochs
compared with the epochs for scaled inputs). In an IWN, however, the weights are range
limited, and cannot compensate for the magnitudes of very small but important inputs.
The only way they can handle it is through using more hidden neurons, which results
in more expensive training. Similarly, for the outputs, if very fine tolerances are set,
it may require large weights to achieve those tolerances, which again results in more
expensive training [91].

This chapter was exclusively devoted to integer valued weights. The next chapter
highlights the weaker learning capability, especially the lack of affine group invari-
ance!? of this integer-weight scheme, and also discusses the relationship between weight

depth and size of the hidden layer.

BThe property of a group due to which it stays unchanged after the application of a rotation, shift,

or scaling transformation.

Discrete-weight Approximation

of Continuous-weight Networks

4.1 Introduction

The response of a multilayer feedforward network having continuous weights can be
approximated with one having discrete weights only. The quality of this approximation
can be improved in one of two ways [22] — either by allowing a larger number of discrete
levels [40,169], or by having more hidden neurons [58]. This chapter, while discussing
both, will emphasise the latter approach, and will mainly be concerned with weights
having small integer values. The experimental results of this chapter suggest that
in many cases, the decrease in the quality of approximation caused by finite weight
resolution can be offset by an increase in the number of hidden neurons.
Discrete-weight networks have a very attractive feature not found in CWNs — the
amount of information stored in their weights is quantifiable [22]. The CWN can store
an infinite variety of information, whereas the discrete-weight networks have only a
limited capability. Varying the discretisation scheme shows how much complexity is

required to get a reasonable approximation to a given learning task. This can be a

61

62 4.2 Approximating Continuous-weight Perceptrons

significant step towards understanding the fundamental relationship between approxi-
mation and memory.

Multilayer feedforward networks with integer weights can be used to approximate
the response of their counterparts with continuous-weights. Integer weights, when re-
stricted to a maximum magnitude of 3, require just 3 binary bits for storage, and
therefore are very attractive for hardware implementation of these networks. However,
these integer-weight networks have a weaker learning capability and lack the affine
group invariance of continuous-weight networks. These weaknesses, although compen-
satable by the addition of hidden neurons, can be used to one’s benefit for closely
matching the network complexity with that of the learning task.

The purpose of this chapter is to explore the capabilities of discrete-weight networks
with the help of the decision! and error surfaces of a set of 2-D classification problems,
which are generalisations of the conventional XOR problem. It is shown that provided a
suitable discretisation interval is chosen, a discrete-weight network can be found which
performs as well as a CWN, but that it may require more hidden neurons than its
continuous-weight counterpart.

The collection of learning heuristics used for the simulations of this chapter is the

same as the one used in the last chapter.

4.2 Approximating Continuous-weight Perceptrons

A perceptron with continuous weights has the ability to implement an infinite variety
of hyperplanes in its input space. On the other hand, a perceptron having W integer-
weights in the range [~ K, K], is limited to (2K + 1)V choices only (see Figure 4.1).
This restriction is the reason for the lack of the affine group invariance in integer-weight
perceptrons. It will be shown experimentally that the addition of a hidden layer to this
perceptron can restore this invariance.

All ten data sets shown in Figure 4.2 are linearly separable and therefore can be

classified correctly by a continuous-weight perceptron. IWNs with increasing number

LA decision surface is a plot of the response of an output neuron with respect to the inputs.

63 4.2 Approximating Continuous-weight Perceptrons

(Offset = 0)
(Offset = +£1)
(Offset = +2)

(Combined)

Figure 4.1 The set of decision boundaries of an integer [-3, 3] weight 2-input perceptron
with offset. Some of the possible 73 decision boundaries lie outside the {(-1, -1), (1, 1)}

square, and therefore are not shown.

64 4.3 Approximating CWNs with IWNs

(V) (0) (P) (Q) (R)

Figure 4.2 Linearly separable data sets with decision boundaries at gradually varying

angles.

of hidden neurons were used to classify these data sets and it was found that E, .
decreased (roughly) logarithmically with the number of neurons (see Figure 4.3). This
logarithmic rate of decrease in error is different from the theoretically calculated degree
1/2

of approximation result: FE, was found to decrease at rate of ¢~/%, where ¢ is the

number of hidden neurons [4, 64].

4.3 Approximating CWNs with IWNs

In the work reported here, mappings of the form f: R? — {—1,1}!, R being a closed
interval [—1,1], were used for comparing the IWN and CWN decision surfaces for a
set of 10 classification problems (Figure 4.4) which were used for numerous training
runs on 2:¢:1 networks, with and without skip-layer synapses? The results for those
simulations are summarised in Table 4.1.

Problems D, D*, E, and E* are of the same complexity, as far as the minimum

number of required dichotomies is concerned. For all four problems, the CWN requires

2Skip-layer synapses are the synapses connecting neurons in two non-adjacent layers. On some
problems,; their use has been found to result in more compact solutions. Also known as short-cut

synapses [78]. Known as main effects in the statistical literature [127].

65 4.3 Approximating CWNs with IWNs

1&Q J&P
0 0
) -2
-4 -4
-6 -6
1 2 3 4 1 2 3 4
K & O L&N
0 0
-2 -2
4 -4
-6 -6
1 2 3 4 1 2 3 4
M R
0 0
%—2 -2
g
g-4 -4
-6 -6
1 2 3 4 1 2 3 4

Hidden neurons

Figure 4.3 IWN minimum E,

Orms

as a function of the number of hidden neurons for the

data sets shown in Figure 4.2. The 1 and 2 hidden neuron E, __ were found by exhaustive

rms

search, whereas the rest were determined by finding the lowest of at least 10 training runs.

66 4.3 Approximating CWNs with IWNs

Q
(A) (B) (@)
(A*) (B*) (C*) (D*) (E*)

Figure 4.4 Training sets used for comparing the learning capabilities of IWNs and CWNs.

Fa

The thick lines are the examples of the minimum number of possible dichotomies. A*—E*

are slightly deformed versions of A-E with smaller inter-point distances.

two hidden neurons with skip-layer synapses and four without. For the IWN, however,
the numbers are somewhat more variable, and larger. This is due to the inability of the
IWN to implement dichotomies at arbitrary angles and for arbitrarily close training data
points. It should, however, be pointed out that this inability was compensated for by
the addition of hidden neurons. In a way, this apparent drawback is a beneficial feature
of IWNs. This feature provides a fine control on matching the network complexity with
that of the learning task.

Problems D and E have the same number of dichotomies, but are different in terms
of the angles of the dichotomies. E requires angles in a certain narrow range, whereas
D can be implemented with a wider range of angles, and therefore is an easier learning
task requiring fewer hidden neurons. A similar comparison can be drawn with respect
to D and D*, and F and E*, with the added difficulty of smaller inter-point distances in
D* and E*. This hierarchy of problem complexities is evident in the minimum number
of hidden neurons required for the implementation of these problems in IWNs with
skip-layer synapses (Table 4.1). In the case of networks without skip-layer synapses,

however, this is not the case. This is because these networks have to have at least as

67 4.3 Approximating CWNs with IWNs

Table 4.1 Comparison of the minimum number of hidden neurons required by CWNs and
IWNs for learning problems of increasing complexity. The corresponding decision surfaces

are shown in Figures 4.7-4.10 (problems D, D*) and Figures C.1-C.14 (the rest)

Minimum Number of Hidden Neurons

with Skip-layer Synapses w/o Skip-layer Synapses
Problem Dichotomies CW ﬁ W 3 CWN IWN
A 0 0 - -
1
A* 0 0 - -
B 1 1 2 2
2
B* 1 1 2 2
C 1 1 3 3
3
c* 1 1 3 3
D 2 2 4 4
4
D* 2 3 4 4
F 2 4 4 4
4
E* 2 5 4 5

many hidden neurons® as the minimum number of required dichotomies in the training
data.

A hexagon shaped training set was used to further study the effect of the angle of
the training data dichotomies on the learning ability of the IWNs. The hexagon data
set of Figure 4.5 was rotated around its centre in 5° steps, and m (i.e. 2:¢:1 network
with skip-layer synapses) IWNs were trained on it. The results of those training runs
are presented in Table 4.2. Only two data configurations, ones with rotations of 15°
and 45°, were learnable with one hidden neuron. These data configurations resulted
in exactly the same decision surfaces except for a 90° rotation from the former to the

latter. This, once again, shows that IWNs find it difficult to draw dichotomies at certain

3This is true in general but not strictly: for example, a 2:2:1 network can implement up to three

dichotomies in its input space.

68 4.3 Approximating CWNs with IWNs

Figure 4.5 Hexagon training set with 0° rotation.

Table 4.2 Comparison of the minimum number of hidden neurons required by an IWN
(with skip-layer synapses) for learning the hexagon data set as it was rotated by 5° steps.

The decision surfaces for 0° and 15° rotations are shown in Figure 4.6

Rotation 0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 50° 55° 60°

Hidden neurons 2 2 2 1 2 2 2 2 2 1 2 2 2

angles, favouring a discrete set of angles instead.

4.3.1 Repeated Decision Surfaces

Almost all of the integer-weight training runs resulted in some repeated decision sur-
faces. For example, all skip-layer training runs on the hexagon training set of Figure 4.5
with a 15° rotation resulted in the exactly repeated decision surfaces of Figure 4.6.
Similarly, all of the skip-layer runs for problem D resulted in similar decision surfaces,
differing only by a rotation of a multiple of 90° (see Figure 4.9 g-1). The reason for
the repetition with extra rotation is certainly the 4-fold symmetry of D. The decision
surfaces for the skip-layer runs for problem D* shown in Figure 4.10 have the same
similarity except for Subfigure j: this decision surface is an inverted version of the other
five. The ‘without skip-layer synapses’ runs on D and D* did not result in such regu-
lar and exact repetitions: the D* runs were split into the repetition of two dissimilar
patterns, whereas the D runs had at least four distinct patterns.

The repetition of surfaces suggests that the complexity of the network is exactly
matched with that of the target problem. Therefore, the problem solution, i.e. the
decision surface, can be represented in only one way by the network. The closeness

of the match is determined by the complexity of the data and the number of free

69

4.3 Approximating CWNs with IWNs

PN Ay SO
TR SRR

s '.'~:~'~¢;¢"s
""""""’""’f"’"\‘&

AN R
\“s&} 22:: 2

et TR

~
N

>
besates

.«:‘.";::;:::.;::'.’
eTTTRK ""””Q’. ’.”’“
W’W’&’&“‘

L
e TR

AN
w e 08

N ,-.‘~3"’~',~qu ',
X \
e\ Q'"""“““ OO0
N\ COWNO00OR e

l',"'
[

l,',"ll:,’"ll', Iy,
um,’,',l'l",,"'l'",,'
UG
7

'll','""'i':i'
[]
7

777
7
L17

177
H 1T

.-s»b;'éifi":“::;‘.;iﬁii.
T
.. (S

Figure 4.6 Decision surfaces after 6 consecutive training runs on the hexagon data: with

a 0° rotation for a 2:2:1 IWN (a-f); with a 15° rotation for a 211 IWN (g-1).

70 4.3 Approximating CWNs with IWNs

R
“M’m i
i““'i'“’"" ’“
L52Z ::...,ii%;%; '::.

LT
BRI
LR

72X~

i;;';%"‘ TS
) .Q‘s‘-”i’fy’i’""ﬂ
~.«.-~.-~,~,~,~,~mmvv"

Z

v
‘ NSt e s
RN

S S .
SRR
LI TAZILLT
R 1%

A
REELLLLILE
R

B e/

O]
LS
L

W,

Sz

SRR 0
RO
MY

Wi

f
//

7z
e, % '
I

=X

=

&
A5 L2
LR TR '
t"'iif:'/'""%:!. L
22 7 AL IITHS
LR
Rz
\,'.'

q I

%
N
2
"3’:’:31//
N\

i

N S\ G

.’t‘.".':.:i .".'.ii.:. 7%
L2\
=

Figure 4.7 Decision surfaces after 6 consecutive training runs on problem D: 2:4:1 network

with double-precision weights (a-f); 2:4:1 network with integer weights (g-1).

71 4.3 Approximating CWNs with IWNs

—1 Input#l1 1

[y

2

’I)

Input#2

it
b

>
]

W

%

0 7,///7*

S
LR
L

sy 0
%i‘.;::wl-’#'&&ﬁ\

i)
N

A
sl i
\ 2 .' 4
DR LRALLLN],
 ALELIZIINN
e S e

i i

e
A EEELLRLLILILTN
B e S e s
[2R
e -n"iq 70

W

::.i\\\“

i

Z

N
RN 0
i

e

LA
s
5»%':,’:4""

R

S, Sl
L

)

.'.l””"ilvs

QLT
"".'"'.,

(0

Figure 4.8 Decision surfaces after 6 consecutive training runs on problem D*: 2:4:1

network with double-precision weights (a-f); 2:4:1 network with integer weights (g-1).

4.3 Approximating CWNs with IWNs

72

Vi
> 4

—1 Input#l1 1
4

AT
RLLLIE
N]
RLLLLBLLLLZZN |]
R EEELLLL
o,

NP
SR
v/ A

AR =
R
R
Iz

Input#2

|
-

1777
A0
e MY
y Qs y e N,
/ NS/, XRELLLTINHI
A= Nz /Y
\ Nzl NSy
NRLERLLETITLL LRI TZIHTS
RLRLITT S S SN
S SN
S ANNEd A
|| & &7
|y

X
77
2l
Saa sy
LRALRZILIATIIN)
I sy S
ESSSSG S N
pSE >

\ 7
® i Q‘h H
. sz AR 1H}
7 TN Q8 =eenutyy)
< ~'~:~‘.‘.~.~‘~2~'~': 4 ,‘2““‘\\%{{.’:&%{.’:’,@4’
RLEEZILL A S NI IZT]
S SNt
R RLLIIL L LI
LRI 2 %
2 LR &
22 7

R
AN

7

/ NS 7
LN
R

A
AR
P\ <
N 25
N 1
SN b’\&:":”' 7 , i
SN B OSES] % LIRS
NS N/
A e e e N N S S S e S v
NSRRI LI ONSLLLIZAL]
RN NS
S AN Q&,.z:? ,;’/,lt,ng‘e

R
LA
LR
22

\
N
I, 72 N 7
177H R
L LA
il N LRI
Nz 1111 \\\\\\\-.~.~.-.~.~.~:.~:.~ulllll'
N\l] N2z N)
G Z A] NSt)
Sy TR
LR

NN
N\

S
st

SR
LR
R F,
R
LRI

Figure 4.9 Decision surfaces after 6 consecutive training runs on problem D: 2:2:1 network

with double-precision weights (a-f); 2:2:1 network with integer weights (g-1).

73

4.3 Approximating CWNs with IWNs

—1 Input#l1 1

:T*w: = N
'E B = f.'z'.:'z::: 2L '#:\\\\§
= NP w,u lissk

|
-

i

R
]
Z

R

“\% XX /’I’#’Q‘
TN
CRX t{".‘b‘& y

R

sid)
)
R L

R LRI IFLY
LRI ATS
ALE

- "/‘V’:"’"”"’;“:\\\\‘M

I
=it
Wiz

a:
WL
‘&"«l l

V
R T HT T
Y

[ERERIIZ L]
e e ey
e e,
(T2
/R

2RI Z 7
25
N

5

=
N (2
SN 'i::,

YA TN

)/

cl/

‘b"ll

R LLETI LI
SRR

(| i
A DL ‘
) S

4

% 22

IR

S
R
NS

NI

4

RN
R
I
%
R

<

T
1]

\\\\\\
-
szt

177
OEEEZAL L] |
s lill]]]
v, ¥
\RRLELILILIHL]
S S e e /g
RLLZIIK

LLLELLLLT 1

N 717
2

7

e
| e\
REREEIIL

AR

l,l'.'. LIS

R

G

7177

ez 11117
Sz

Sy

2z Rz

Figure 4.10 Decision surfaces after 6 consecutive training runs on problem D*: 221

network with double-precision weights (a-f); 2:3:1 network with integer weights (g-1).

74 4.4 Error Surfaces

Table 4.3 Repetition of decision surfaces

Repetitions Problem Problem Complexity = Configuration No. of Weights

Most D D 721 9
2nd most D* >D 731 15
3rd most D* >D 2:4:1 17

Least D D 2:4:1 17

parameters in the network as is clear from Table 4.3: the problem with the smallest
network has the most repetitions, and the simplest problem with the largest network
has the least number of repetitions.

Training runs on most of the problems of Figure 4.4 resulted in some duplicated
decision surfaces for IWNs, whereas none of the continuous-weight runs resulted in any
significant repetitions. The corresponding decision surfaces are shown in Figures 4.7-

4.10 (problems D, D*) and Figures C.1-C.14 (the rest).

4.4 Error Surfaces

Another way of comparing CWNs with their discrete-weight approximations is via
their error surfaces. Discrete-weight error surfaces are just the low-resolution sampled
versions of the CWN error surfaces, as can be seen in Figure 4.13, where error surfaces
for the weight resolutions of 1 and % are compared . The locations and values of
the global minima for these error surfaces are displayed in Table 4.4. The location

of the IWN minimum is the same as that guessed from the location of the one for

1

the weight resolution of g,

although this may not be the case in general. The depths
of the two minima are within one half percent of each other. There is, however, an
important difference between the two minima: at least one of the training instance was
misclassified at the IWN minimum, whereas in the case of the network with %—resolution7
all of the instances were correctly classified at its global minimum.

CWN error surfaces can be analysed to find out whether a network with a certain

weight resolution will be able to represent a given input/output mapping. If the CWN

75 4.4 Error Surfaces

o (J
o [J
o o
o o
XOR1 XOR32 XOR3 XOR+% XOR4

Figure 4.11 XORXx training sets.

Figure 4.12 Symmetric weight 2:T:1 XOR network.

error surface contains sharp minima at points which are missed by the low-resolution
sampling, then the discrete-weight network will not be able to represent the same
mapping with reasonable accuracy. Figure 4.11 shows the modified versions of the
XOR problem used as the test problems to study this phenomenon. These modified
versions were produced by gradually bringing the four data points close to each other.
As the data points are brought closer, the slope of the error surface in the vicinity of
the global error minimum becomes steeper. The minimum looks like the top of a funnel
when the points are far apart, as in Figure 4.11 XOR1, and looks more like the middle
of a funnel when the points are close by, as in XOR%. A 211 network with symimetric
weights (Figure 4.12) was used to find the depth of the global minima for a number of
weight resolutions. Symmetric weights were used to reduce the free parameters of the
network from seven to five. It is quite clear from Table 4.5 that, in the case of XOR%7
the error minimum has such a narrow collection region that the IWN cannot ‘see’ it
because of low-resolution weight sampling, and a network with a weight resolution of

at least 0.125 is required to correctly classify all the data points, albeit with a relatively

76 4.4 Error Surfaces

2 TN NS

= ® = > o o “
—

Figure 4.13 Error surface for the network of Figure 4.12 on the XOR% problem of Fig-
ure 4.11. The 7 images in the left half are for integer weights and the rest are for a weight
resolution of 0.125. wj, = 3. wj, = =3. 0 is plotted along the horizontal axis of the

contour plots, and 8, along the vertical axis. wyp, is the figure in the brackets.

77 4.5 Discussion

Table 4.4 The locations and values of global minima of Figure 4.13.
The italicised figure indicates that one or more training instances were

misclassified at this global minimum

Weight Resolution Who On o Eo,pns
1 1 1

1 3 11 21 0.784

Integer 3 1 -2 0.787

Table 4.5 Global error minima (each of multiplicity 4) as a function of weight resolution.
The italicised figure indicates that one or more training instances were misclassified at this

global minimum

Weight Resolution (win = —3, Wmaee = 3)

6 3 2 1.5 1 0.75 0.5 0.25 0.125

Number of Bits Required

1 2 2 3 3 4 4 b} 6

Problem E

Orms

XOR1 0.879 0.875 0.501 0.097 0.210 0.097 0.097 0.097 0.097
XOR% 0.722 0.722 0.719 0.192 0.177 0.134 0.104 0.104 0.104
XOR% 0.875 0.875 0.212 0.148 0.212 0.148 0.148 0.139 0.139
XOR% 1.167 0.946 0.736 0.711 0.540 0474 0.465 0.446 0.430
XOR% 1.088 0.991 0.977 0.958 0.787 0.859 0.787 0.787 0.784

large error.

4.5 Discussion

Decision and error surfaces were used to explore the discrete-weight approximation of
CWNs. Although most of the conclusions of this chapter are based on integer-weight
results, similar behaviour has been observed for other levels of discretisation.

The CWN can store an infinite quantity of information, whereas the discrete-weight

network’s storage is finite and depends upon the depth of weights. The latter does,

78 4.5 Discussion

however, have the advantage of efficient hardware implementation. Moreover, it pro-
vides an interesting way of quantifying information stored in a network [22]. Changing
the discretisation scheme of the weights of a fixed-size network, or keeping a fixed dis-
cretisation scheme while changing the size of the network, are alternative techniques for
determining the amount of network complexity required for approximating the response
of a CWN to a specified tolerance. These two competing techniques can be used to
understand the fundamental relationship between the maximum error admissible in the
approximation and the storage capacity required to meet that limit. This extra level
of control available on the complexity of discrete-weight networks can be beneficially
exploited. Whereas the CWN has only one parameter, the number of hidden neurons,
that can be used to adjust its complexity, the discrete-weight network has two: number
of hidden neurons and the weight depth. Using the additional selectivity of the weight
depth, the network designer can choose a network with a complexity that matches more
closely the complexity of the learning task. This will result in improved generalisation

performance.

Multiplier-free Networks

5.1 Introduction

Feedforward networks with synapses from the set {—1,0,1} and continuous offsets can
be formed without implementing the conventional multiplier in neurons. The reduced
complexity of the neurons, combined with the fact that all synapses require a single bit
for storage! makes these networks very attractive for implementation in hardware.
The number of multiplication operations required for a forward pass’ in a feed-
forward network is equal to the number of synapses in that network. The quickest way
to perform a multiplication in a digital electronic implementation is with a flash multi-
plier. An n-bit fixed-point VLSI flash multiplier consists of n x n full adders, each one
of which is made up of 31 transistors [2]. If the classic NETtalk network of Sejnowski
and Rosenberg [132] was to be constructed in this very fast incarnation, approximately
10° transistors will be required for n = 8. The slower but more cost-effective option

is to have a single multiplier in each hidden and output neuron, and to perform the

LA zero valued synapse is not a synapse, it just indicates the absence of one!
2Forward pass is the process by which a network computes the output vector in response to an input

vector. Also known as recall.

79

80 5.1 Introduction

multiplications in a sequence instead of all in parallel. To reduce the transistor count
even further at the expense of slower computations, a sequential multiplier can be
used. All these cost cutting measures can still not compete with the elegance of the
multiplier-free scheme, which, by restricting the synapses to the set {—1,0,1}, elimi-
nates the multipliers altogether, and replaces the expensive and/or slow conventional
fixed-point multiplication operation with a fast and simple sign-adjustment instruction.
Moreover, the presence of zero valued synapses reduces the time for a forward-pass in
digital electronic hardware.

In analogue electronic implementations, the use of Multiplier-Free Networks (MFN)
considerably simplifies the manufacture due to the decreased demand for expensive
trimming schemes required to achieve the precisely valued synapses required for con-
ventional networks. It should be noted here that the MFN offsets still require full
precision trimming. The number of offsets in a network is, however, generally low. For
example, the synapse to offset ratio for the NETtalk network is 173 to 1. Moreover,
the presence of zero valued synapses also reduces the cost of manufacture of analogue
hardware.

In optically implemented networks, where synapse values can be represented as
grey-scale masks or voltage levels for spatial light modulator, the complexity of imple-
mentation is again reduced because the grey-scale masks and the voltage levels require
just three states each — opaque and transparent, and high and low, respectively.

It is possible that the severity of the {—1,0,1} weight restrictions may weaken the
MFN'’s approximation ability, but simulations on classification tasks indicate otherwise.
Comfort is also provided by a new theoretical result on approximation in C'(R) presented
in this chapter. That result confirms the existence of networks with synapses from the
set {—1,1} and unrestricted offsets, that can approximate all continuous functions of
one variable to any desired accuracy.

MFNs may have some performance related benefits besides the obvious hardware
implementation advantage. For example, the MFN learning procedure generates net-
works with some weights having a value of zero. The number of these zero-valued

weights is higher if larger-than-optimal MFNs are used for training. The reduced num-

81 5.1 Introduction

ber of effective weights, combined with the fact that all non-zero weights are restricted
to only two values, limits the complexity of the network. This can result in reduced
over-fitting and therefore improved generalisation performance: it is known from shrink-
age estimation and ridge regression analysis in linear models that generalisation can be
improved by reducing the size of the weights from estimates that give best fit in the
sample [128].

Another potential advantage of the MFN is its relatively immunity to noise in
training data. The MFN only captures the main features of the training data in its
discrete-valued synapses. Low amplitude noise present in the training data cannot
perturb the discrete synapses, because these weights require relatively larger variations
in order to jump from one discrete value to another.

The constraints placed upon the network weights may result in an increase in the
necessary number of hidden neurons required to achieve a given degree of accuracy on
most learning tasks. It should also be noted that the hardware implementation benefits
are valid only when the MFN has been trained, as the learning task still requires high-
resolution arithmetic. This makes the MFN unsuitable for in-situ learning. Moreover,
high-resolution offsets and activation function are required during training and for the
trained network.

Previous work on multiplier-free feedforward networks consists of networks having
powers-of-two or sums of powers-of-two discrete weights (see for example [77,89]). These
schemes were inspired by FIR digital filter design, involving the replacement of the slow
and expensive multiplication operation with a series of faster and inexpensive shift and
add steps. The network proposed in this chapter is even easier to implement because
the multiplication operation has been completely replaced by a single sign-adjustment
step.

This chapter starts by presenting the proof of the universal approximation in C(R)
property of a multiplier-free feedforward network. The multiplier-free functionality
of this SISO? network has been made possible by restricting the input layer synaptic

strengths to {—1,1}. Moreover, the output layer synapses have all been set to a con-

3Single-input single-output

82 5.2 Universal Approximation

stant value equal to 1. It is shown that, in spite of these strong restrictions on synapses,
this network can approximate continuous functions of one variable to any desired ac-
curacy. This chapter also provides experimental evidence that MIMO* multiplier-free
feedforward networks with synapses from {—1,0, 1} and unrestricted offsets are a viable
alternative to networks having high-resolution weights. Only the preliminary results
on the functionality tests of MIMO multiplier-free networks will be presented in this
chapter. The main results on generalisation performance will be held back until the
next chapter, where they will be contrasted with those for the conventional continuous-

weight networks and integer-weight networks of Chapter 3.

5.2 Universal Approximation

The decision boundaries implementable with integer-weight and multiplier-free per-
ceptrons having two inputs and an offset are shown in Figure 5.1. The very uni-
form distribution of the decision boundaries, which is controlled by the resolution of
the offset, is the distinctive feature of the multiplier-free case. This uniform distri-
bution points towards MFN’s possible candidature for being a universal approxima-
tor. On the other hand, the integer-weight decision boundaries are not uniformly
distributed, supporting the fact that multilayer networks formed with integer weights

from {—3,—-2,—-1,0,1, 2,3} lack the universal approximation property (see Section 3.4).

5.2.1 Approximation in C(R)

This section establishes that a feedforward network with no output layer synapses,
bipolar-binary synapses in the hidden layer, unrestricted offsets, and a single hidden
layer of neurons requiring only sign adjustment, addition, and hyperbolic tangent acti-
vation functions, can approximate functions in C(R) with arbitrary accuracy.

The conventional SISO feedforward network having a single layer of hidden neurons

and unrestricted weights can be expressed as:

K
g(@) =" a: 6low + pi), (5.1)
=1

4Multiple-input multiple-output

83 5.2 Universal Approximation

Integer-weight perceptron

Multiplier-free perceptron

Figure 5.1 A comparison of the decision boundaries of a integer [-3, 3] weight perceptron
(same as Figure 4.1) and a multiplier-free perceptron, each with two input synapses and
an offset. For the multiplier-free case the synapses are restricted to the set {-1, 0, 1}, the
offset is unconstrained, and this figure shows the boundaries for an offset resolution of 0.1

only. Decision boundaries which lie outside the {(-1, -1), (1, 1)} square are not shown.

84 5.2 Universal Approximation

a;,c; € {—1,1}
bi,d]‘,e €ER

Figure 5.2 Multiplier-free feedforward network.

where ¢ is sigmoidal, and o;,p;,¢; € R. The new multiplier-free counterpart of this

conventional network is shown in Figure 5.2. Consider the function f of that figure:

1 7

Fle) = Y ol + b0+ 3 wlesr +dy) + o (5.2
i=1 j=1

where a;,¢; € {—1,1}, b;,dj,e € R o(-) = tanh(-), ¢(-) = ao(-), and o € R\Q. The

universal approximation property of f can be stated as follows:

Theorem 5.1 (MFN Existence Theorem) Finite sums of the form f are uniformly

dense on compacta in C(R). O
The proof of Theorem 5.1 is dependent on the following two lemmas.

Lemma 5.1 Let ¢ be a function superanalytic almost everywhere and its derivatives

form a basis for continuous functions. Then finite sums of the form

K
Zti (b(nx + Si),
i=1

85 5.2 Universal Approximation

where 7; € {—1,0,1} and s;,t; € R, are uniformly dense on compacta in C(R). O
Proof This follows immediately from Theorem 2.3. O
Lemma 5.2 Given any o € R\Q, if m,n € Z then m + na are dense in R. O

Proof This follows immediately from the following theorem [50]:

Theorem 5.2 (Kronecker’'s Theorem in One Dimension) If o € R\Q, n € Z, then

the set of points formed by the remainders of na is dense in the interval (0,1). O

Proof® Let y, = (na), with n = 1,2,3, ..., where ‘(na)’ denotes the remainder of na.
Since « is irrational, y, is never 0, and no two ¥, points coincide. The set of y,, points,
S, has therefore a limit point, and there are pairs (Y., Yntr), with 7 > 0, which can be
made near to each other with an arbitrary large value of r.

Let the directed stretch y,y,4, be a vector. If a stretch y,,z, equal to y,ynir, iS
marked off in the direction of ¥n¥nis, from any ¥,,, then z is another point of S, and
in fact ymr. It should be noted that if the 7,2 extends beyond 0 or 1, then the part
of it so extending is to be replaced by a congruent part measured from the other end,

1 or 0, of the interval (0,1).

There are vectors of length less than ¢, where ¢ > 0, and such vectors, with r > p
where p < n, extending from any point of S, and in particular from y;. If such a vector

is measured repeatedly, starting from 3, a chain of points,
(ma), 2ma), Bma), ...,

of any desired length can be obtained. The distance between consecutive points of this
chain is less than e. There is therefore a point (knja) or (na) within a distance ¢ of

any « of (0,1). Therefore, (n«) is dense in (0,1). O

®This proof closely follows the approach presented in [49)].

86 5.2 Universal Approximation

Proof of Theorem 5.1 Following the proof of Lemma 2.2% it must be shown that
sp({oc®|(=r,7) : k > 0}) = C(R)|(—=r,7). By the Stone-Weierstrass theorem it is
known that for any continuous and strictly monotonic o the set of polynomials in
o, {Zk cof:0<k<j<n, ne€ N} is uniformly dense in compacta in C(R). Direct
calculation shows that o) = (1 — ¢2), 62 = —20(1 — ¢%) = —2(c — ¢°), and that
the derivative of o is k- o*~1- (1 — 0?) = k- (¢*~1 — ¢**1). This implies that the set
of finite linear combinations of the derivative of ¢ is exactly the set of polynomials in
0. As o(+) is superanalytic almost everywhere’, and as its derivatives form a basis for

continuous functions, finite sums of the form

K
> tio(ri + sy), (5.3)
1=1

where 7; € {—1,0,1}, s;,t; € R, and o(-) = tanh(-), are dense on compacta in C(R)
by Theorem 2.3. The 0 value of r; is needed only for providing a constant offset in the
output. e can be used for that constant offset and bipolar-binary u; can be substituted

for the ternary ;.
K
Z tio(u;x + s;) + e, (5.4)
i=1

where u; € {—1,1} and e € R. If ¢; is now replaced by m; + n;«a, then according to

Lemma 5.2,
K
Z (m; + nja) o(u;z + t;) + e, (5.5)
i=1

where m;,n; € Z and a € R\Q, is dense in sums of the form of Expression 5.4, and
consequently dense on compacta in C'(R). Since m;,n; € Z, they can be absorbed in

the sums
J

Zo(uiaz+ti) —i—Zoza(uix—i-ti) +e, (5.6)

=1 =1

where I,.J € N. Tt should be noted here that the last step requires o(-) to be a bipolar

function to account for negative values of m; and n;,. Now by substituting () for

5This lemma is in Chapter 2, its proof, however, is presented in Appendix A, where it is known as
Lemma A.4.

7tanh(-) is superanalytic everywhere except at 0.

87 5.3 MIMO Multiplier-free Networks

ao(+), and making some cosmetic changes, the final result is achieved:

1 J

Z o(a;x + b;) + Z P(cjo +d;) + e,

i=1 j=1
which is same as the fof Equation 5.2 and now has been shown to be dense on compacta

in C(R). Theorem 5.1 is proved. O

The MFEN existence theorem, Theorem 5.1, guarantees that an arbitrary continu-
ous function of one variable can be approximated to any desired degree of accuracy
with the feedforward network of Figure 5.2. This network trades off the complexity
of individual neurons with a possible increase in their number. Learning algorithms
similar to the one proposed in Chapter 3 can be used to train networks of this type.
Although the complexity of the learning algorithm is increased by the presence of two
distinct activation functions in the hidden layer, it is some what compensated for by
the complete lack of weights in the output layer.

The constraints placed upon the network weights may result in an increase in the
necessary number of hidden neurons required to achieve a given degree of accuracy
on most learning tasks. In addition, the hidden layer is not homogeneous in the pro-
posed model, and requires two types of neurons — differing, however, in their activation
functions only. Conventionally, these activation functions have been implemented in
hardware with look-up tables. If the MFN is implemented as a distributed processing
system then each hidden neuron will have its own look-up table. In that case, the
requirement of two types of hidden neurons will not result in any additional hardware-

complexity.

5.3 MIMO Multiplier-free Networks

The universal approximation result that was proved in the last section was for a SISO
network® No theoretical evidence for universal approximation in C'(R?), i.e. universal

approximation of multivariable continuous functions, with similar networks is currently

8This SISO result implies universal approximation for the SIMO (single-input multiple-output) case

as any SIMO network can be constructed as an ensemble of SISO networks.

88 5.4 Multiplier-free Learning

available, although the author conjectures it to be true. This conjecture was tested with
a series of experiments with MIMO MFNs. The MIMO MFNs used for these experi-
ments differed with the SISO MFNs of the last section in two ways: first, they were
allowed to have output layer weights, and these weights were restricted to {—1,0,1} to
preserve the multiplier-free functionality of the network; secondly, the « of Figure 5.2
was set equal to 1, which resulted in a homogeneous hidden layer. Neither step was
necessary for the success of these experiments, but they were taken to improve the
size and speed of the implementation: the first step makes unnecessary the redundant
presence of two hidden neurons with outputs differing in polarity only and allows the
flexibility of not connecting some hidden neurons to some of the output neurons; the
second step makes unnecessary the presence of two separate types of hidden neurons,

without noticeably degrading the learning performance during the experiments.

5.4 Multiplier-free Learning

The collection of heuristics used for the MIMO MFN simulations is a modified version
of the one described in Chapter 3 — the modifications being that the synapses are now
restricted to {—1,0,1} instead of {—3,—2,—1,0,1,2,3} and that the offsets are not
discretised and are modified solely according to the conventional BP procedure.

It is worthwhile to note here that, like IWNs, MFNs are more suitable for learning
classification tasks than function approximation tasks. This conclusion can be drawn
by examining the decision boundaries of the 2-input multiplier-free perceptron (Fig-
ure 5.1). These boundaries have only four possible slopes, and all other slopes required
for a given learning task have to be formed using a combination of these four. This,
in general, will result in an impractically large number of hidden neurons to meet the

finer error tolerance requirements of function approximation tasks.

5.5 Functionality Tests

The functionality of MFN learning was checked by performing 25 simulations each

on the XOR, and 4:2:4 and 8:3:8 encoder/decoder problems. The setup for these

89 5.5 Functionality Tests

Table 5.1 Comparison of CWN and MFN Learning epochs

Problem Config. Network Min. Max. Avg. Median
2:2:1 CWN 9 127 32 22
XOR

2:3:1 MFN 93 2778 792 467
CWN 7 31 14 12

Encoder/Decoder-4 4:2:4
MFN 17 116 39 33
CWN 75 1241 269 172

Encoder/Decoder-8 8:3:8
MFN 90 044 199 133

simulations was the same as the one used in Chapter 3. The results are shown in
Table 5.1.

The training runs on the XOR problem with a 2:2:1 MFN were not successful —
the E,, did not meet the ¢ requirement of 0.4 after numerous runs. The minimum
achievable E, was 0.42. The inability of the 2:2:1 network to learn the XOR problem
can be explained in terms of the maximum allowed strengths for the synapses. This
maximum strength and the slope of the linear region in the middle of the neuron
activation functions (see Figure 1.2) are interchangeable quantities. The steepness of
the slope determines the sharpness of the decision surface close to the decision boundary.
This sharpness, in turn, determines the error in the decision close to the decision
boundary. Correct decisions that are located close to the decision boundary result in
small errors if the slope of the activation function is large. For CWNs and IWNs,
the larger allowed strengths of synapses result in sharper effective slopes for activation
functions, which in turn results in smaller possible E,. In the MFN case, however, the
maximum magnitude of synapses is limited to one. It is clear from Figure 5.1 that the
MFN does possess the appropriate dichotomies in its repertoire that can separate the
training points of the XOR problem successfully. The decision surfaces around those
dichotomies are, however, not steep enough to result in an acceptable E, . In the 2:3:1
case, the total input to the output neuron is larger because of the increased fan-in,

and therefore, the network is able to create sharp enough decision surfaces around the

90 5.6 Discussion

dichotomy that result in low enough F,_. The number of learning epochs is, however,
still large. This is due to the small number of possible solutions present in the weight
space. Any further increase in the number of hidden neurons will certainly result in a

smaller number of epochs.

5.6 Discussion

The new feedforward network paradigm proposed in this chapter lends itself to very
efficient hardware implementation because it does not require a conventional multiplier
for its operation — the expensive and/or slow multiplication operation has been sim-
plified to a single sign-adjustment instruction. This was accomplished by restricting
all synaptic values to {—1,0,1}. This synapse scheme has the added benefit of storage
efficiency.

The multiplier-free networks are, in general, expected to be larger than their con-
ventional counterparts in terms of the number of hidden neurons, but should be more
compact in hardware due to the absence of the conventional multipliers. The total
number of multiplication operations required for a forward pass is equal to the number
of non-zero synapses, S»g, in each network. Experimental results of this and the next
chapter show that CWN and MFN require similar number of non-zero synapses to
achieve similar performances. To achieve the fastest forward pass, the CWN requires
O(n?) transistors to implement each n-bit fixed-point flash multiplication operation,
whereas the MFN requires O(1) transistors for a single 1-bit conditional sign-changer.
Therefore, it can be concluded that for similar execution speeds, the cost of implement-
ing the multiplication operations in a CWN is O(n*S.g) compared with O(Sg) for
the MFN.

An MFN existence theorem was also presented in this chapter. This theorem
guarantees that a feedforward network with no output layer synapses, bipolar-binary
synapses in the hidden layer, unrestricted offsets, and a single hidden layer of neurons
requiring only sign adjustment, addition, and hyperbolic tangent activation functions,

can approximate all functions of one variable with any desired accuracy. A multivari-

91 5.6 Discussion

able extension on this theorem is currently not available, but the experimental evidence
of this chapter points toward its existence.

MFNs require high-resolution arithmetic during the training phase. This makes
them unsuitable for in-situ learning. Many commercial feedforward network applica-
tions (for example [135]), however, do not require in-situ training. The possibly large
number of learning epochs required for MFNs as compared with CWNs should not be a
deterrent to their use as, in many practical applications [159], the learning period occu-
pies only a small fraction of a network’s lifetime usage. When products incorporating
such applications are mass produced, e.g. a neural network controlled microwave oven,
the length of training time becomes a completely insignificant part of the combined
design and manufacture process.

In general, discrete weights are expected to result in larger networks. Because of
their larger size, the complexity of the discrete-weight networks is more granular than
that of CWNs. This finer granularity can be exploited to select a network with a
complexity that matches more closely with the complexity of the learning task. This
should result in improved generalisation performance. A comparison of the generali-
sation performance of MFNs with that of CWNs and IWNs will be presented in the
next chapter. These results will show that the MFNs are as effective generalisers as

conventional CWNs.

Generalisation Experiments

6.1 Generalisation Performance

This chapter is concerned with comparing the generalisation performance of the two
new paradigms proposed in this thesis, IWN and MFN, with that of the conventional
continuous weight feedforward network. Although ease of implementation and learn-
ing time are important factors which influence the choice of a feedforward network
paradigm, generalisation performance — the accuracy of a trained network on unseen
data' [15] - is the key metric which determines a paradigm’s usefulness.

A trained network will be a good generaliser if it has learned the concept embedded
in the training data [16]. Training a network which will be a good generaliser is not
a trivial task because most real-life applications demand training with noisy data. A
good generaliser will have a smooth input to output mapping, which generally means
that it will not have many large weights [16]. Also, its complexity will match that of
the ‘noise-free’ version of the mapping embedded in the training data.

The weights of IWNs and synapses of MFNs are limited in their magnitudes. They

also usually have larger hidden layers, compared with their CWN counterparts. Because

1Unseen data is the data that was not used to train that network.

92

93 6.1 Generalisation Performance

of the larger number of hidden neurons in their hidden layers, their complexity is more
finely selectable than that of CWNs. This finer granularity can be exploited to select
a network with a complexity that matches more closely with the complexity of the
learning task at hand. It was found in Chapters 3 & 5 that some of the weights of
the trained IWNs and MFNs have zero values. This reduces the number of superfluous
parameters in the model. These three factors — smaller weights, a more finely granular
complexity, and zero weights — point towards a simpler model, which should result in
IWNs and MFNs having a generalisation performance better than or equal to that of
the CWNE.

The methodology of the generalisation experiments presented here was to train
many CWNs, IWNs, and MFNs on a given set of data in similar circumstances, to
pick as representative of each of the three paradigms the network which was the best
generaliser, and compare the performances of those representatives. Three data sets,
exemplifying three very different of fields of feedforward network applications, were
used for these experiments. All of these sets — the MONK’s benchmark, the Pima
Indian diabetes database, and the handwritten numeral recognition database — are
publicly available and have been used in the past by many other researchers for the
benchmarking purpose [9,21,25,31,44,47,48,93,113,134,143,145,146, 149,150, 162].

This chapter provides experimental evidence that IWNs and MFNs, despite having
severely constrained weights, are as effective generalisers as conventional feedforward
networks. It starts by discussing the techniques that are commonly used for estimating
the generalisation performance. Various regularisation techniques used for tailoring the
complexity of a network with respect to the learning task at hand are then presented.
The target network of the generalisation experiments, the optimal network, is then
defined. After presenting the methodology of the learning experiments, this chapter

concludes with the results on the three data sets.

94 6.2 Estimation of Generalisation Performance

6.2 Estimation of Generalisation Performance

Moody [97] has proposed the following relationship for estimating the error on test
data, E,,,, from the sum-of-squares error on 7 training examples, E,, (T') [16]:

9F,, (T 1%
E,, = 73:()4 202%’7 (6.1)

where W,z is the number of effective weights in the CWN, and o? the variance of the
noise on the training examples. The number of effective weights is usually smaller
than the total number of weights in the CWN [97] and has to be estimated. The
effective number of training examples may also differ from the actual. ¢ is another
parameter that needs to be estimated. The difficulty of accurately calculating these
three estimates makes the prediction of F,,, using Equation 6.1 infeasible. Useful
conclusions can however be drawn from the form of this relationship. For achieving the

best generalisation, i.e. the lowest E,,, to E,,, ratio:

1. The number of training examples should be maximised.
2. The variance of noise on training examples should be minimised.

3. The number of effective weights, or the total number of (non-zero) weights in

general, should be minimised.

The third conclusion points towards the better suitability of the IWN and MFN as

generalisers as compared with the CWN.

6.2.1 Empirical Estimation

Comparative experiments for the empirical estimation of generalisation performance

can be set up in one of three ways [95,153]:

1. Train-and-test A random sample containing one half of the total number of exam-
ples is selected. This subset is used to train the network, while the remaining
examples are used to test the network once it has been trained. The perfor-
mance of the trained network on the test set is an estimate of the generalisation

performance.

95 6.2 Estimation of Generalisation Performance

2. Cross-validation The data set is divided equally into £ randomly selected, mutually
exclusive subsets called folds. k& — 1 networks are trained sequentially on all
combinations of & — 1 folds, while the performance of the trained networks is
tested on the one remaining fold. The average of k — 1 such errors is an estimate

of the generalisation performance metric.

3. Bootstrap A random sample is selected by sampling with replacement? from
the data set and is used to train the network. The trained network is then tested
on the remaining data. This procedure is repeated a large number of times. The
average of all such test errors is an estimate of the generalisation performance

metric.

The train-and-test technique is recommended for large (>1000 samples) data sets, cross-
validation for ones with intermediate sizes, and bootstrap for small data sets [95]. For
classification learning tasks, the size of data sets should be measured by the number of
examples of the smallest classification group, which is termed as the effective sample
size. The generalisation performances estimated by the three techniques converge as
the size of the data sets grow. In terms of implementation efficiency, train-and test
is the fastest of the three, bootstrap the slowest. The latter two techniques are quite
useful for comparing the relative performances of a given set of network paradigms but
they fail to deliver a single network representing the paradigm that will be the best
generaliser? The train-and-test technique, however, does produce such a network — the
one having the best performance on the test data.

It should be noted here that the test data subset mentioned in the train-and-test
experimental setup for estimating the generalisation performance is not used in any

way during training, and that this test data is not the same test subset as is used for

2Sampling with replacements may result in successive samples being not mutually exclusive, some
of the examples may never appear in any of the samples, and there may be repetitions within an
individual sample.

3The outputs of the k — 1 cross-validation networks can however be combined with the help of a
second level ‘master’ network, trained with respect to the desired outputs of the training data, to form

a large single network [163]. This technique is called ‘stacked generalisation’.

96

6.3 Regularisation Techniques

‘optimal stopping of training’ to be discussed in the next section.

6.3 Regularisation Techniques

Regularisation techniques avoid over-fitting and automate the model selection process.

They result in smoother models, which in turn, results in better generalisation perfor-

mance. Regularisation is achieved by enforcing smoothing and complexity minimising

constraints on the model so that the resultant is the least complex model which fits a

given set of training data [16]. Common regularisation methods are:

1.

Weight decay is the technique in which a penalty term is added to the training
cost function which penalises large weights. A common penalty term is the sum
of the square of weights [57]. This technique is known as penalised ridging in the

statistical literature.

. Weight elimination is the technique in which the number of non-zero weights is the

penalty term [51,81,110,152]. The integer-weight learning procedure presented

in Chapter 3 incorporates an implicit weight elimination mechanism.

. Weight sharing is the technique in which the number of independent weights is the

penalty term [105,122].

. Addition of noise to weights during training results in robust internal representa-

tions which have better generalisation performances [99,100].

. Addition of noise to inputs during training yields a smoother function by provid-

ing small variations to the input [73,131]. This technique is known as smoothed

ridging in the statistical literature.

Optimal stopping of training uses two sets of data during training, one for training
and the other for testing, to stop the training when error on the test data hits a
minimum. It has been successfully tested in many experiments where the number
of examples is relatively large compared with the number of adjustable parameters

in the network [103,130,151].

97 6.4 Optimal Network

7. Bayesian methods define a set of model regularisation parameters, e.g. the strength
of the weight decay mechanism, and make the estimation of the optimal values
of those parameters a part of the learning process. This is the most recent, and
potentially the most useful, technique for training feedforward networks. The
‘exact” implementation of this technique suffers from the slow speed of training,
the recent ‘approximate’ implementations, however, hold much promise [87,130,

141].

The regularisation method selected for the experiments presented here is ‘optimal stop-
ping of training’. This popular technique is fast, works well with larger-than-necessary
networks, and does not require the introduction of any new training parameters ex-
cept the ratio of train/test data split [130]. The CWN experiments presented here use
weight decay in addition to optimal stopping of training. Weight decay was used to
stop weights from reaching excessively large values. This makes the comparison be-
tween IWN and MFN, and CWNs more meaningful, because IWNs and MFNs are not
allowed to have large weight values. Avoiding large weights assures that the network

learns smooth mappings [16].

6.4 Optimal Network

The definition of the optimal network used for the experiments presented here is based

on the conjecture called Ockham’s Razor? [141]:

If two different models have similar performances on a

set of data then the simpler of the two should be preferred.

The optimal configuration is therefore defined to be the network configuration with the
smallest number of hidden neurons which results in the lowest number of misclassifica-
tions on the test data set. It should be noted that for CWNs, the test data performance
may not degrade if the number of hidden neurons is increased beyond the optimal num-

ber provided that the ‘optimal stopping of training’” method is used [130]. There is,

4This conjecture, also known as Occam’s Razor, about economy in explanations, was systematically

applied, but never explicitly stated by the 13th century philosopher, William of Ockham [141].

98 6.5 Generalisation Experiments

however, a problem with using larger than optimal networks — although smaller net-
works are not guaranteed to be better in general, Baum and Haussler have shown in [7]
that for a given training set and training error, the worst-case error bounds on unseen
data vary proportionally with the number of weights in a network. Moreover, larger-
than-optimal networks are slower and demand more storage space. It will be shown
experimentally bellow that, for IWNs and MFNs, if larger than the necessary number
of hidden neurons are used then the number of zero weights increases automatically to

reduce the effective complexity of the network.

6.5 Generalisation Experiments

All three data sets used for the experiments presented here are publicly available and
have been used by many other researchers for benchmarking. They represent three
very different of fields of feedforward network applications. The first one, MONK’s
benchmark, is an artificial set and was designed to compare the capabilities of a number
of learning algorithms, consists of three separate classification tasks, one of which is
noisy, and each of which has binary-coded inputs and a single binary output [143,
146, 162]. The second set, onset of diabetes prediction data set, has both discrete
and continuous inputs, may have some irrelevant inputs, may have much noise in the
inputs, may have a high degree of correlation between inputs, and has a single binary
output [9,25,93,113,134,145,149,150]. The final set, handwritten numeral recognition
data set, is a representative of the image processing applications, has a high degree of

information redundancy, has discrete inputs, and many binary outputs [21,31,44,47,48].

6.5.1 Methodology

The only goal of the experiments presented in chapter is to compare the generalisation
capability of the three paradigms, CWN, IWN, and MFN, in similar circumstances.

Keeping this in mind, the classification error probability on the test data was used as

99 6.5 Generalisation Experiments

the metric of comparison, not sensitivity® or specificity? as the goal is to compare
learning capability of three paradigms and not the usefulness of the model.

The train-and-test technique was chosen to estimate the generalisation performance
because of its simplicity of implementation. Only two, instead of the recommended
three, data subsets were, however, used for this purpose — the first one for training, and
the second one for optimal stopping of training as well as estimating the generalisation
performance. The dual use of the second subset is not strictly appropriate as it has
been used during training and therefore the performance metric extracted from it is not
an unbiased estimate of the generalisation performance of the trained network [125].
In the case of the experiments discussed here, however, the emphasis is on comparing
the generalisation ability of the three paradigms in similar circumstances, and not esti-
mating their true generalisation performance. This particular emphasis on comparison
was the main reason for the use of just two data subsets. Moreover, all of the previous
results cited here on MONK’s benchmark and the handwritten numeral recognition
database have used the same strategy [31,47,143,146].

The train-and-test method has another use in addition to the optimal stopping of
training — network size or complexity selection. Figure 6.1 shows how a network can
can be evaluated on the test data after every training epoch for optimal stopping of
training. If training is continued any further, there is a risk that the network will become
over-trained and therefore over-fit the training data, resulting in poor generalisation
performance. The second use of train-and-test is shown in Figure 6.2. Here, networks of
various complexities, i.e. sizes in terms of the number of hidden neurons, are evaluated
on the test data after training has been completed to select the network with the
best test data performance. For CWNs, however, this test data performance may not
degrade if the network size is increased beyond the optimal provided that the train-

and-test method is used for optimal stopping of training [130].

5Sensitivity of a decision is the likelihood that an event will be detected if it occurs. It is the ratio of
true positives to the sum of true positives and false negatives. This metric is especially of importance
when it is critical that an event be detected. Also known as True Positive Ratio [34].

5Specificity of a decision is the likelihood that the absence of an event is detected given that it is

present. It is the ratio of the true negatives to all negatives. Also known as True Negative Ratio [34].

100 6.5 Generalisation Experiments

A: Optimal network
B: Under-fitted network

\
___ _____________ ___Training A

0 <—Under-trained —<—Over-trained—
Optimal stopping point

Testing B

Averaged Error

Figure 6.1 Using train and test-every-epoch for optimal stopping of training.

y

___ _____________ __ Training

+—Underfit—+—Overfit—
Ockham

Averaged Error

-

Complexity

Figure 6.2 Using train and test-at-the-end to select network size or complexity.

101 6.5 Generalisation Experiments

The TWN and MFN were tested after they had converged to a discrete solution.
If the performance on the test data was not satisfactory then the BP learning rate n
was temporarily boosted by a factor of k, for one epoch to push them out of the local
minimum and training was continued until the next discrete solution. If the network did
not converge in C'r epochs, the training procedure was reinitialised without reinitialising
the training epochs counter, Cp. Network configurations with zero hidden neurons
were tested first, and then hidden neurons were added until the network performance
on test data failed to improve. At least a hundred training runs were performed for
each network configuration, and many hundreds for promising ones. Test data results

reported here represent the best performance of the optimal configurations.

6.5.2 MONK’s Benchmark

The MONK’s benchmark” was proposed by Wnek et al. [160-162] and has been used
for comparing the generalisation performances of 25 learning techniques by the creators
or advocates of those techniques [143,146]. These techniques included both machine
learning and feedforward network paradigms. The feedforward network paradigms were
conventional BP, BP with weight decay, Cascade-correlation [143], and Alopex® [146].
This benchmark is based upon an artificial robot domain. Each robot in this domain
can be described by specifying values for a set of six attributes. Each one of these
six discrete attributes can have one of 3, 3, 2, 3, 4, and 2 values, respectively, which
results in 432 possible combinations, which constitutes the total data set. The learning
benchmark consists of three binary classification problems. Each of these problems is
concerned with determining the membership of a robot to a particular class. The goal
is to learn the logical class description from only a subset of the description of the 432

robots that can be classified.

"This benchmark is publicly available in the directory ftp://ics.uci.edu/pub/machine-learn-
ing-databases/monks-problems/ [98]

8 Alopex is a stochastic learning procedure which uses local correlations between changes in individual
weights and changes in the cost function to update those weights. This procedure predates the current
resurgence in neural network learning by more than a decade and was originally proposed for mapping

visual receptive fields [146].

102 6.5 Generalisation Experiments

Table 6.1 Network configurations for the MONK’s benchmark. The Alopex simulations

used a slightly different input encoding resulting in 15 inputs only
CWN trained with

BP BP with Weight Cascade Alopex
Problem [142] Decay [142] Correlation [36] [146] IWN MFEN
1 17:3:1 17:2:1 17:1:1 15:3:1 17:4:1 17:3:1
2 17:2:1 17:2:1 17:1:1 15:3:1 17:3:1 17:2:1
3 17:4:1 17:2:1 17:3:1 15:3:1 17:1 17:2:1

Problem 1 (Attribute 1 = Attribute 2) OR (Attribute 5 = 1)
This problem is in standard Disjunctive Normal Form (DNF). 124 examples were
selected randomly from the data set for training, while the remaining 308 were

used for testing.

Problem 2 Only two attributes = 1
This problem is similar to the parity problem and is difficult to describe in DNF
or Conjunctive Normal Form. 169 examples were selected randomly from the

data set for training, while the rest were used for testing.

Problem 3 (Attribute 5 = 3 AND Attribute 4 = 1) OR
(Attribute 5 # 4 AND Attribute 2 # 3) with added noise
This problem is also DNF but with 5% deliberate misclassifications in the training
data set which consists of 122 examples. The remaining 310 examples were used

for testing.

For meaningful comparisons, the simulations discussed here use the same training/test
data subsets as were used in [143,146]. Each possible value of every attribute was
assigned a single bipolar-binary input, resulting in a total of 17 inputs. The L-
norm, F, . was used as the error function for the first two problems as they are
noise-free, whereas the Ly-norm, E, __, was used for the third one as it contains some
misclassifications. TWNs and MFNs with various 17:¢:1 configurations were trained

and the configurations resulting in the best generalisation performance are shown in

103 6.5 Generalisation Experiments

Table 6.2 Comparison of generalisation performance on the MONK’s benchmark

CWN trained with

BP BP with Weight Cascade Alopex
Problem [142] Decay [142] Correlation [36] [146] IWN MFN
1 100% 100% 100% 100% 100% 100%
2 100% 100% 100% 100% 100% 100%
3 93.1% 97.2% 97.2% 100% 100% 100%

Table 6.1. A comparison of the generalisation performance of the IWN, MFN, and
CWNs on the MONK’s benchmark is presented in Table 6.2. It is clear from this table
that IWNs and MFNs are at least as capable generalisers as the best generated by
continuous-weight learning algorithms.

It is very interesting to note that the IWN solution for problem 3 does not involve
any hidden neurons, suggesting that the problem is linearly separable® — which in fact
is the case if the deliberate misclassifications are removed from the training data [36].
This result points towards the robustness of IWNs for handling noise in the training
data. The TWN only captures the main features of the training data in its discrete-
valued weights. The small number of noisy examples present in the training data cannot
perturb the discrete weights, because these weights require relatively large variations
in the input data in order to jump from one discrete value to another. The networks
having continuous synapses or offsets, and trained by steepest descent techniques, are
obliged to vary their weights by very tiny amounts so that the average error in the
outputs is minimised. This results in their failure to capture the concept embedded in
the training data, and fitting to the noise instead.

It was stated in Chapters 3 & 5 that the proposed integer-weight learning procedure
generates IWNs and MFNs with many weights having a value of zero and that the

number of zero-weights is higher if larger-than-optimal networks are used for training.

9Linear separability is the property of a classification task by which the members of every class can

be separated from the ones from all other classes by a single hyperplane.

104 6.5 Generalisation Experiments

Table 6.3 Zero valued weights in the IWNs and MFNs trained on the MONK’s benchmark

Configuration Weights
Network Problem Startup After Training Zero Effective
1 17:4:1 no change 52 25
IWN 2 17:4:1 17:3:1 20 38
3 17:1 no change 12 6
1 17:3:1 no change 24 34
MFN 2 17:3:1 17:2:1 2 37
3 17:7:1 17:2:1 23 16

This statement is well supported by these simulations on the MONK’s benchmark as can
be seen in Table 6.3. Averaging over the three problems, 55% of the IWN weights have
a values of zero. The equivalent figure for MFNs is 36%. These figures are for effective
network configurations obtained after training, and not for configurations at the start
of training, as some of the hidden neurons had zero valued synaptic connections with

the output neuron, and therefore did not have an active role in the final configuration.

6.5.3 Forecasting the Onset of Diabetes Mellitus

This data set!? is concerned with a group of adult women belonging to the Pima Indian
tribe and was collected by the U.S. National Institute of Diabetes and Digestive and
Kidney Diseases [8,71,72]. The learning task is to forecast the onset of diabetes mellitus
according to the World Health Organisation criterion'! within five years of a clinical
examination. A set of eight risk factors, which were recorded during that clinical
examination, are used to make this prediction. 768 such clinical histories constitute
the data set out of which 268 are for patients who tested positive for diabetes within

five years of the clinical examination and the rest were found to be healthy.

0The data set is publicly available in the directory ftp://ics.uci.edu/pub/machine-learning-
-databases/pima-indians-diabetes/ [98]
" The patient has diabetes mellitus if the plasma glucose concentration after 2 hours in an oral

glucose tolerance test is 200mg/dl.

105 6.5 Generalisation Experiments

49% of the 768 clinical records had zero values for attributes which cannot be
zero. These are most probably missing values [114]. Moreover, it should be noted that
this database may be very noisy: some of the attributes may be unimportant. Some
attributes may have been measured incorrectly, some of the most important attributes
may have been completely missing, and one of the attributes, the diabetes pedigree
function, is based on the heuristic combination of many pieces of information. The

complete list of the input variables is as follows:

1. Number of times pregnant.

2. Plasma glucose concentration after 2 hours in an oral glucose tolerance test. This

is the standard test for diagnosing diabetes.
3. Diastolic blood pressure (mm Hg). An above normal value is a risk factor.
4. Triceps skin fold thickness (mm). It indicates the degree of obesity.

5. 2-hour serum insulin (mu U/ml). It is below normal for insulin dependent dia-
betics but not for non-insulin dependent diabetics, and therefore, is not a good
predictor [101]. This was the attributes missing in most of the cases with missing

attribute values.
6. Body mass index (kg/m?). Tt also indicates the degree of obesity.
7. Diabetes pedigree function. It represents the hereditary risk factor.

8. Age (years).

From a clinical point of view, the glucose concentration, diabetes pedigree, age, and
obesity are the major risk factors, the insulin level is of some importance, and the blood
pressure and number of pregnancies are the least important indicators [101]. It will be
interesting to compare this ranking with the weight structure of the trained networks.

This database has been analysed with the help of connectionist tools in [9, 25,93,
113,134,145,149,150]. Smith et al. used the ADAP algorithm, a neural-like algorithm

which uses Hebbian learning to build associative models, to learn from a randomly

106 6.5 Generalisation Experiments

selected subset of 576 cases, and have reported a sensitivity and specificity of 76% on
the test set consisting of the remaining 192 cases. This equality of the two figures
was achieved by thresholding the continuous 0-1 output of the model at 0.448 [134].
Michie et al. used a set of 22 machine learning, neural, and statistical techniques to
analyse this data [96]. They used 12-fold cross-validation to determine generalisation
performance. They achieved their best results of 87.7% with logistic discriminant
analysis!? whereas a figure of 75.2% was obtained with a CWN trained using BP.
Wahaba et al. [150] used 500 cases for training and 252 for testing with a smoothing

113 and report a generalisation performance of 76%. This study deleted

spline mode
16 cases from the database because those cases had some attributes with impossible
values. Bioch et al. [9] used the same data configuration and a Bayesian classifier!?
which resulted in a generalisation performance of 88.7%. Carpenter and Markuzon [25]
have also analysed this database and have reported a generalisation performance of 77%
with k-nearest neighbours!® 78% with ART-EMAP! and 81% with ARTMAP-
IC!" Ripley [115] used 200 cases for training and 332 for testing, and ignored the
rest because of missing values. The study reports that the best CWN results were
obtained without a hidden layer of neurons. The best overall results of this study was

a generalisation performance of 81% obtained by using a mixture representation!®

?Logistic discriminant analysis chooses classification hyperplanes with respect to maximising a con-
ditional likelihood cost-function and not optimising a quadratic cost function which is the case for
linear discriminant analysis [93].

3Smoothing spline modelling is piecewise approximation by polynomials of degree n with the re-
quirement that the derivatives of the polynomials are continuous up to degree n—1 at the junctions [20].

M Bayesian classifier assigns a class to an object in such a way that the expectation value of misclas-
sification is minimised. Also known as the minimum risk classifier, and belief network.

5 k-nearest neighbours is a clustering algorithm that minimises the the sum of squares of distances
between the training data and & points.

1 ARTMAP with added spatial and temporal evidence accumulation processes. ARTMAP is a
supervised learning procedure explicitly based on neurobiology.

T ARTMAP with an instance counting procedure and a new match tracking algorithm.

Mixture representations of data use a linear combination of Gaussian distributions to represent

arbitrary distributions [10].

107 6.5 Generalisation Experiments

Table 6.4 Comparison of generalisation performance on the forecasting diabetes database

Network Configuration Zero Weights Effective Weights Gen. Perform.

CWN 8:2:1 — 21 78.4%
ITWN 8:6:1 26 35 76.9%
MFN 8:3:1 6 25 78.0%

and the EM algorithm!? [116].

For the simulation results presented here, a balanced data set, i.e. a set having
equal number of positive and negative cases, of 536 cases was randomly selected. This
set was then split into two equal, balanced subsets for training and testing. All eight

attributes were then standardised to zero mean and unit variance [13].

T — Uy
Oy

T <—

where i, is the calculated mean, and o, the standard deviation. All attribute values
outside the [—1,1] range were truncated to {—1,1}. The standardisation of inputs
to zero-means and small magnitudes along with initialising the network with small
uniformly distributed weights has the advantage that most of hidden neurons start
with their outputs in the linear region of the activation functions, where the learn-
ing progresses the fastest [129]. Moreover, Le Cun et al. have analytically shown that
standardising the inputs to zero mean improves the convergence properties of BP learn-
ing [82].

A comparison of the generalisation performance of the best IWN, MFN, and CWN
on the diabetes database is presented in Table 6.4. The three generalisation perfor-
mances are within 1.5% of each other, with CWN being the best and IWN the worst.
One expects IWN to be the worst performer, but why is the MFN, with its smooth
and simple mappings due to the presence of weights with small magnitudes and many
zero weights, not performing better or equal to the CWN? Is it because the universal

approximation conjecture about its capabilities is wrong? That is a possible reason.

¥ Expectation Maximisation (EM) algorithm calculates the probability density of observations based

on parameters and not observations.

108 6.5 Generalisation Experiments

Another possible reason may have to do with a fault on account of the experimental
procedure: it is possible that the two hyperplanes drawn by the hidden neurons of the
CWN are positioned in such a way that it requires the superpositioning of a large num-
ber of MFN hidden neurons to emulate them. The MFN experiments were performed
with a maximum of 19 hidden neurons and the best solution that was found used only
a fraction of those 19 as that was the best that can be found with up to 19 hidden
neurons. It is possible that with more hidden neurons a better solution can be found
but the price of that minute increase in accuracy is an impractically large hidden layer.

Keeping in mind the discussion about the noise-immunity characteristic of the IWN
on the MONK’s problem 3, a valid question to ask here is that why did the IWN not
outperform the other two paradigms on this diabetes data set? This data set, just like
MONK’s problem 3, is noisy and therefore should result in better performance with
the IWN. The answer to this question may lie in the amount of noise present in the
data — MONK’s 3 had only 5% corrupted examples, whereas in the present case the
number, although unknown, is likely to be higher, as is indicated by the large number
of misclassification on both training and testing data.

As an aside, it was found that all three paradigms agreed in rating the glucose con-
centration test and age to be the most important attributes. This first-order approxi-
mate rating was determined by summing of the absolute values of synapses connecting

the inputs to the hidden neurons.

6.5.4 Handwritten Numeral Recognition

The numeral database?® used for these simulations was collected at Bell Labs [21, 31,
44,47,48]. Tt consists of 1200 isolated handwritten samples of numerals 0..9. Twelve
individuals were asked to provide 100 samples each while following a given writing style,
resulting in 120 examples of each numeral. The sample style given to the writers was
similar to the one required for the U.S. Internal Revenue Service’s machine readable

tax form 1040EZ [1] (see Figure 6.3). The raw images of those samples were normalised

20This database has been kindly made publicly available by Isabelle Guyon at ftp://hope.caltech.-

edu/pub/mackay/data/att.database

109 6.5 Generalisation Experiments

498 76543210

Figure 6.3 Sample style for writing numerals on the machine readable U.S. Internal Rev-

enue Service tax form 1040EZ [1].

and then thresholded to fit a 16 x 16 binary pixel grid. This database was then carved
into two subsets of 600 samples each — the first five samples of each numeral from every
writer were used for training and the rest for testing (see Figures 6.5 & 6.6). Guyon et
al. [47], and Druker and Le Cun [31], both have reported a generalisation performance of
97% with a 256:20:10 network trained using conventional BP, and a 256:40:10 network
trained using ‘double backpropagation’, respectively. For the simulations presented
here, the 256 element matrices were transformed into 32 element vectors by summing
the rows and columns as shown in Figure 6.4. Each element of the these 32-element
vectors was then transformed as

r—8
T —

The distributions of the resultant input features are shown in Figure 6.7 for all ten
numerals, for both training and testing data. It should be noted that in that figure, to
the human eye, each of the ten numerals is clearly distinguishable from all others even
after this 256 — 32 inputs transform. Although this 8-fold reduction in input dimension
did cause a 4% reduction in generalisation performance (compared with [31,47]), it
made the running of many more simulations possible due to the reduced memory and
CPU requirements. The numeral classification decisions were taken according to the
neuron with the maximum signal in the output layer.

CWNs, TWNs, and MFNs with various 32:¢:10 configurations were trained and
the results for the best performing networks are shown in Table 6.5. The lack of the
universal approximation property in a IWN may be the cause of the slightly lower
performance of the IWN, whereas the finer control over network complexity may have
caused the slightly better performance of the MFN. It should, however, be stressed that
the differences between the generalisation performance of the networks representing the

three paradigms are not significant enough to claim the superiority of one over any of

110 6.5 Generalisation Experiments

Ut Ot Ot Ot Ot U = DN

1

(@4

—_
(@4

NN NN

24555 555322 211156 1

Figure 6.4 Feature reduction (256 — 32) of the handwritten numeral data. The 32 row

and column sums instead of the 256 pixel values were used for both training and testing.

the rest. Nevertheless, it can be concluded from these results that the very strong
constraints placed on the weights of IWNs and MFNs have not significantly hampered
their performance.

Table 6.6 shows the details of the errors made by the three networks of Table 6.5.
The number of misclassification on each numeral are similar for the CWN, IWN, and
MFN for all save one numeral: ‘3’. In this case, the CWN made 10 mistakes out of a
total of 60 ‘3’s it was tested on, the IWN 4, and the MFN none. These differences of
6 and 10 between the performances of IWN and MFN with that of the CWN are the
top two differences over all numerals. The next highest difference is 4 for the numeral

21 over all 10 numerals is 1.5 and 2.3, respectively. Why

‘5’, and the average difference
is the CWN making very much higher than average mistakes on ‘3’ compared with

the IWN and MFN? It may have to do with the amount of noise in the training data,

21This average difference is the average of the sum of absolute difference between the mistakes made

by the CWN & IWN, and CWN & MFN, respectively.

111

6.5 Generalisation Experiments

Ol 223456787 O 23456789 O 23957837
Of 224567349 Ol 2345677189 O} 23956787
Ol 23456759 Ot 234577187 O 23956757
Ol Z245S6789 Ol 234567787 Ol 23956787
Ol 223456789 O 234567187 O0f 2395C 757
O\ 27456789 O 23956787 Ol 23456 184
O 22342GT1EN O 2395757 O 23456789
Ol 27496718 T O 23954787 Ol 23456 7184
O\ ZXAA4SG6T7ERA O 2393£ 7859 Ol 23465677589
Ol 2345678 OF 239367877 QL 22456 78%
Ol 23556787 Ol 23456789 Of AS13&6789
Ol 23456787 O 234567899 01 AST56787
Ol 23456782 0l 23456759 O L9576759
Ol 23456787 0 23956789 Qf A 59567 89
Ol 234567587 OV 23456723 Q1 23956727
Ol ABNEGC7RYU Ol 2R4567/87 O/ 237567287
OV LAHS5& /%9 01 25956 /%7 O/ 234567587
Ol 3IYHNSEG 78T 0O 239456787 O/ 234C&787
Ol AZHSG KT Ol QS Y56/ 87 O/ 23408787
Ol ABAS5GT7EA O 234856787 O/ 23408787

Figure 6.5 Training data for handwritten numeral recognition

and the previously stated hypothesis that networks with discrete synapses outperform
the CWN on test data when low-level noise is present in the training data. Visual
inspection of the ‘3’ features of Figure 6.7, however, does not prove or disprove this
explanation.

The number of zero weights in the best performing IWN and MFN is quite large,
38% and 32%, respectively. There are only 271 non-zero weights in the case of the
IWN. As each of these weights is 3 bits deep, the complexity of the network is 813
bits?? This means that the network requires approximately 82 bits to store the non-
parametric characteristics of each numeral to give a generalisation performance of about

92%. In the case of the MFN, 307 single bit synapses and 21 high-resolution offsets

22The effective complexity, in fact, is somewhat lower than this, as only seven of the eight available

states with 3 bits are being used.

112 6.6 Discussion

Ol Z234S 6782 Ol 23456787 Of 23956787
Ol 223956757 Of 23456789 Ol 25756787
Ol 23456787 OFf 23456737 O/ 23756757
Ol 234567587 O 23456789 Ol 2375&737

Ol 22456787 OFf 23456757 OF 23956787

O\ 2345678 7F Q7 25S&75T Ol 229456789
O\ 23US6 7383 Of 223YSE6757 Ol 2354566 78%
Ol 23456709 Of 22456287 O 2.345 2589
OV 23456787 QFf 23986 /787 O 223456789
Ol 23456709 O ZR2YSE/857 Ol 28456 75%

Ol 23456757 Ol 234567837 OFf A59Y7&87%7
Ol 23456757 Ol 23456789 Qf AfY567° 59
Ol Z234.56787 O 23456789 Of 259567 &9
Ol 23456787 Ol 2534956739 QFf 253956/, 87

Ol 234567587 Ol 22340 &£7EFA 0/ A 59567 &7
O\ ABHSGT7R99 01 23456 /87 O/ 23488787
OY AIHUSG V7R Ol 23456 /87 O/ 223858787
Ol ABHSG 79 Of 23456/ R7 O/ 2385787
Ol A31SG /A 0] 23456787 O/ 23488787
Ol A23UE5GC7R990CI 23986857 623587287

Figure 6.6 Test data for handwritten numeral recognition

are needed. This leads to a figure of 64 or 81 bits per numeral depending upon the
fixed-point offset resolution of 16 or 24 bits. The equivalent figures for the CWN are
498 or 746 bits per numeral. The above calculations lead to the inference that for
similar generalisation performances, the ranking in terms of storage efficiency is MFN,

IWN, and CWN, with MFN being the most efficient.

6.6 Discussion

Experiments were performed to compare the generalisation performances of the three
feedforward network paradigms, CWN, ITWN, and MFN, in similar circumstances.
These experiments used three very different learning benchmarks for the comparison:
the MONK’s benchmark, an artificial set designed to compare the capabilities of learn-

ing algorithms, the ‘onset of diabetes mellitus’ prediction data set, a realistic set with

113 6.6 Discussion

Feature value

Row features Column features

(1-16) (17-32) Numerals

Figure 6.7 Distributions of the individual row and column features obtained after prepro-
cessing the handwritten numeral training (left) and testing (right) data according to the

scheme depicted in Figure 6.4. The line passes through the average value of each feature.

114 6.6 Discussion

Table 6.5 Comparison of generalisation performance on handwritten numeral recognition

Network Configuration Zero Weights Effective Weights Gen. Perform.

CWN 32:7:10 — 311 92.3%
IWN 32:10:10 169 271 91.8%
MFN 32:11:10 155 328 93.2%

very noisy attributes, and finally the handwritten numeral recognition database, a re-
alistic but very structured data set.

The learning procedure used for these generalisation experiments incorporates an
implicit weight elimination mechanism. This feature simplifies the choice of the start-up
network configuration for training as the procedure eliminates any superfluous weights,
and consequently any surplus hidden neurons, leading to the optimal network of Sec-
tion 6.4 automatically. Not only that, the number of training epochs was generally
smaller for larger start-up configurations.

The TWN was shown not to have the universal approximation capability in Chap-
ter 3, whereas it was conjectured in Chapter 5 that the MIMO MFN is a universal
approximator. This suggests that the learning ability, and therefore the generalisation
performance, of the former should not be any better than that of the latter. The exper-
imental results of on all three benchmarks support this suggestion. This criterion also
suggests that the generalisation performance of MFN and CWN should be similar. The
MFN, however, has synapses which are small in magnitude and some of them have zero
values. These two factors discourage over-fitting and lead to the learning of smoother
and simpler mappings, and hence to better generalisation performance. The experi-
ments were inconclusive in confirming this trend — on the MONK’s artificial benchmark
the performance was equal, on the very noisy forecasting the onset of diabetes the CWN
was better by 0.4%, and on the larger but less noisy handwritten numeral recognition
MFN was better by 0.9%. These differences, and those with respect to the IWN, are
nevertheless too small to manifest the supremacy of any one of the three paradigms

over the other two.

6.6 Discussion

115

Table 6.6 Classification chart for the test data showing the actual handwritten numerals

and the numerals predicted by the three feedforward networks.

Errors for

Errors for

Predicted Numeral

Actual

6 7 8 9 the Numeral all Numerals

5
60 0 0 0 0 0 0 0 0 O

2 3 4

1

Network Numeral 0

0
1

0 60 0 0OOO 0 0 0 O

2
0
0
3
0

1 0

1

0 53 0 0 3

0
1
1
0
0

10

2

2 50 0

46

1
4 6 0 43 0 0 3 O

1

0 0 58 0 0 0 O
0

CWN

17

0 0 0539 0 0 O

1
3

0 0 0 O

0 0 0 39 0 O

0 0 54 0 b}

2
0

0
2

57

60 0 0 0 0 0 0 O 0 O
0 39 0 O

1
0

0

9
0
1

0 0 0 0 O

1

0 3 3 0 0 O

0 52 1

1
0

1
1
1

1 57 0 0 0
0 0 0 0 57 0 O
0 0 0 0 0 0 59 0

0

49

2

4

IWN

18

6 0 42 0

5

5

0

1

0 58 0 O

6

1
2

0 0 53 0

2 3 0

0

0

0 55

1

0O 0 0 0 4 0 O
9 0 0 0 0

0 39 0 O

9
0
1
2
3
4

0 0 0 O

1

0 0 0 0 O
2

1

3 0 0 0

0

0 0 54 1

0 0 060 0 0O 0 0 0 O

41

1
0

0 0 0 059 0 0 0 O

MFN

4 10 0 39 0 0 1 21

1
0 0 0 0 0 060 0 0 O

5

6

0 1 0 3 0 5 0 O
0 2 0 0

0

0
0o 0 0 0 3 0 0 0 0 57

0 56 0

2

3

9

116 6.6 Discussion

The TWN solution for MONK’s problem 3 points towards a potentially very useful
feature of discrete-weight networks: the IWN only captures the main features of the
training data in its discrete-valued weights. The small number of noisy examples present
in the training data cannot perturb the discrete weights, because these weights require
relatively large number of variations in the input data in order to jump from one
discrete value to another. This noise rejection feature was not conclusively observed
for the MFN, probably because not all of its weights are discrete.

In conclusion, the results of this chapter indicate that the IWN and MFN, despite
having strong constraints on their weights, have generalisation performances similar to
that of the CWN. Moreover, for similar generalisation performances, the ranking in
terms of weight storage efficiency in descending order is: MEFN, IWN, and CWN. In an
application where the number of learning epochs is not of consequence, and the cost
and speed of the hardware implementation is the critical factor, both IWN and MFN
hold a clear advantage over the CWN due to the storage efficiency of their weights and

the elegance of the way they implement their internal multiplication operation.

Conclusions and Further Work

7.1 Achievements and Conclusions

Three new ideas were presented in this thesis: feedforward networks having integer-
valued weights only, multiplier-free feedforward networks, and the integer-weight learn-
ing procedure. Their merits and limitations will now be summarised.

The integer-weight feedforward networks proposed in this thesis take all their weight
values from the set {—3,—2,—1,0,1,2,3}. These integer weights can be represented by
just 3 binary bits. This property reduces the amount of memory required for weight
storage in digital-electronic implementations. It also simplifies the digital multiplica-
tion operation as multiplying any number with this 3-bit weight requires a maximum
of three basic instructions — one shift, one add, and one sign-change. In analogue elec-
tronic implementations, where weights can be stored as resistances, the integer-weight
scheme requires only 3 distinct resistance values, which streamlines the manufacture
by avoiding the expensive trimming schemes required to achieve the precise resistances
for conventional networks. In optically implemented networks, where weight values can
be represented as grey-scale masks or voltage levels for spatial light modulator, the

complexity of implementation is again reduced because of integer valued weights. The

117

118 7.1 Achievements and Conclusions

presence of zero valued weights simplifies the design of optical as well as all other forms
of hardware.

These networks may have beneficial generalisation properties due to their simpler
structure, but the hardware implementation advantage on its own makes them suffi-
ciently attractive to make it worthwhile to investigate their properties. This thesis has
provided experimental evidence that these networks are a viable alternative to networks
having continuous weights. Although lacking the universal approximation capability,
they can implement learning tasks, especially classification tasks, to reasonable accu-
racies. Experiments indicate that they take relatively longer to train, but have similar
generalisation performance to their continuous-weight counterparts.

Discretisation schemes other than integers were also explored. Decision and error
surfaces were used to explore the discrete-weight approximation of continuous-weight
networks. The results suggest that provided a suitable discretisation interval is chosen,
a discrete-weight network can be found which performs as well as a continuous-weight
networks, but that it may require more hidden neurons than its continuous-weight
counterpart.

The continuous-weight network can store an infinite variety of information, where-
as the discrete-weight network’s storage is finite and depends upon the resolution of
weights. Changing the discretisation scheme of the weights of a fixed-size network,
or keeping a fixed discretisation scheme while changing the size of the network, are
alternative techniques for determining the amount of network complexity required for
approximating the response of a continuous-weight network to a specified tolerance.
This extra level of control available on the complexity of discrete-weight networks can be
beneficially exploited. Whereas the continuous-weight network has only one parameter,
the number of hidden neurons, that can be used to adjust its complexity, the discrete-
weight network has two: number of hidden neurons and the weight depth. Using the
additional selectivity of the weight depth, the network designer can choose a network
with a complexity that matches more closely the complexity of the learning task.

The new multiplier-free feedforward network paradigm proposed in this thesis lends

itself to efficient hardware implementation because it does not require a conventional

119 7.1 Achievements and Conclusions

multiplier for its operation — the expensive and/or slow multiplication operation has
been simplified to a single sign-adjustment instruction. This was accomplished by
restricting all synaptic values to {—1,0,1}. The number of multiplication operations
required for a forward pass in a feedforward network is equal to the number of synapses
in that network. Replacement of all these operations with simple sign adjustments
can greatly speed up the that operation: in software and in hardware, on sequential
systems and on parallel systems. The {—1,0,1} synapse scheme has the added benefit
of storage efficiency. These multiplier-free networks are, in general, expected to be
larger than their conventional counterparts in terms of the number of hidden neurons,
but should be more compact in hardware.

It is possible that the severity of the {—1,0,1} synapse restrictions may weaken
the approximation capability of this network, but experiments on classification tasks
indicate otherwise. Comfort is also provided by the theoretical result on approximation
in C(R) presented in this thesis. That result guarantees that networks with input-layer
synapses from the set {—1,1}, no output-layer synapses, and continuous offsets can
approximate all continuous function of one variable to any desired accuracy.

The new integer-weight learning procedure proposed in this thesis starts off like
conventional error backpropagation, but becomes more and more discretised in its be-
haviour as the network gets closer to an error minimum. It does not, however, make the
assumption that the acceptable error minima for both the integer-weight network and
the continuous-weight one are located at the same location. Mainly based on steepest
descent, it also has a perturbation mechanism to avoid getting trapped in local min-
ima. Moreover, it has a separate mechanism for rounding off ‘near integers’. This same
integer-weight learning procedure was used to train the synapses of the multiplier-free
networks — the offsets were trained using conventional error backpropagation. The
structure of this procedure is such that it can be readily adapted for weight discretisa-
tion schemes other than {—3,—-2,-1,0,1,2,3} and {—1,0,1}.

The learning procedure incorporates an implicit weight elimination mechanism.
This feature simplifies the choice of the start-up network configuration for training

as the procedure eliminates any superfluous weights, and consequently any surplus hid-

120 7.2 Future Work

den neurons, leading to a network of an optimal configuration automatically. Moreover,
the number of training epochs was generally smaller for larger-than-necessary start-up
configurations.

On the other hand, the new learning procedure requires high-resolution arithmetic
which makes it unsuitable for in-situ learning. Many commercial feedforward network
applications, however, do not require in-situ training. The possibly large number of
learning epochs required for integer-weight networks, compared with continuous-weight
ones, should not be a deterrent to their use as, in many practical applications, the
learning period occupies only a small fraction of a network’s lifetime usage. When
products incorporating such applications are mass produced, the length of training
time becomes an insignificant part of the combined design and manufacture process.

Experiments were performed to compare the generalisation performances of the
three feedforward network paradigms, conventional, integer-weight, and multiplier-free,
in similar circumstances. These experiments used three very different learning bench-
marks for the comparison: the MONK’s benchmark, an artificial set designed to com-
pare the capabilities of learning algorithms, the ‘onset of diabetes mellitus’ prediction
data set, a realistic set with very noisy attributes, and finally the handwritten numeral
recognition database, a realistic but very structured data set.

The results indicate that the integer-weight and multiplier-free networks, despite
having strong constraints on their weights, have generalisation performances similar to
that of their conventional counterpart. In an application where the number of learning
epochs is not of consequence, and the size and speed of the hardware implementation is
the critical factor, these networks with constrained weights hold a clear advantage over
the conventional network due to the storage efficiency of their weights and the elegance

of the way they implement their internal multiplication operation.

7.2 Future Work

The following five projects are suggested to further the line of investigation presented

in this thesis.

121 7.2 Future Work

More work is needed on discrete but non-integer weights, and the investigation into
the improvement in approximation capabilities with the reduction of the discretisation
interval. A study analysing the tradeoff between the increase in the cost of hardware
due to the decrease in the discretisation interval and the resultant improvement in

approximation capability will be very useful.

The multiplier-free network was shown to be a universal approximator on the space of
continuous function of one variable in Chapter 5. The extension of this result to the

space of continuous functions of many variables will be very valuable.

There is an inverse relationship between the number of hidden neurons required to
learn a particular task with an acceptable error and the weight depth. A procedure
that could simultaneously vary these two parameters during training will be beneficial

in determining the most cost-effective combination for implementation in hardware.

The Bayesian framework has been employed to automatically determine the optimal
values for weight decay parameters during training to achieve optimal generalisation
performance [141]. As weight discretisation is similar to weight decay, in that it is also a
constraint on weights [140], the optimal values for weight discretisation parameters can
also be determined using Bayesian techniques which will result in optimal generalisation

performance for these constrained-weight networks.

The fast forward-pass capability of a multiplier-free network, implemented on an in-
expensive microcontroller, can be exploited for the non-linear closed-loop control of a
magnetic-bearing spindle system which has an unstable open-loop response. This spin-
dle can replace the conventional ball-bearing spindle in a high speed machining process

to achieve better cutting stability [158].

Glossary’

Activation function is the transform applied to the weighted sum of inputs plus offset

for computing the output of a neuron. Also known as the squashing function.

Affine group invariance. The property of a group due to which it stays unchanged

after the application of an affine transform.

Affine transform is a transform from the set of rotations, shifts, scalings, or any com-

binations thereof.

Algebra. A set of functions A is an algebra if f,ge A, Ve R= f+g€ A, f-g€
A, and Jf € A.

Alopex is a stochastic learning procedure which uses local correlations between changes
in individual weights and changes in the cost function to update weights. This pro-
cedure predates the current resurgence in neural network learning by more than

a decade and was originally proposed for mapping visual receptive fields [146].

Approximation property, Universal, is the ability of a set functions to approximate a

specific class of functions to any desired accuracy.

Approximation property, Best, is the property of an approximation scheme on a set
of functions to select a function that is at a minimum ‘distance’ from the function

to be approximated.

Some of the terms are not explicitly mentioned in this dissertation but are included because of

their usefulness in understanding the cited literature.

122

123 GLOSSARY

ART-EMAP is ARTMAP with added spatial and temporal evidence accumulation

processes [25].
ARTMAP is a supervised learning procedure explicitly based on neurobiology.

ARTMAP-IC is ARTMAP with an instance counting procedure and a match tracking

algorithm [25].
Attribute is an element of the input vector. Also known as a feature.

Autoassociator A system for which the desired output response is the same as the

input.

Backpropagation, Error is an procedure in which the difference between the actual
and desired responses of the neurons in the output layer is minimised using the

steepest-descent heuristic.
Balanced data set is set in which all classes are equally represented.

Bayesian classifier assigns a class to an object in such a way that the expectation value
of misclassification is minimised. Also known as the minimum rigk classifier, and

belief network.

Bayesian statistics differs from the conventional ‘frequentist’ approach to statistics in
that it allows the probability of an event to be expressed as ‘degree of belief’ in

a particular outcome instead of basing it solely on a set of observations [15].

Bayes’s theorem allows prior estimates of the probability of an event to be revised in
accordance with new observations. It states that probability of an event A given

another event B, P(A|B), is equal to P(B|A)P(A)/P(B).
Black-hole mechanism is a rounding mechanism for ‘nearly discrete’ weights.

Black-hole radius. If the value of a weight gets within this radius of a discrete value,

it becomes that discrete value.

Bootstrap. A random sample is selected by sampling with replacement from the data

set and is used to train the network. The trained network is then tested on the

124 GLOSSARY

remaining data. This procedure is repeated a large number of times. The average

of all such test errors is an estimate of the generalisation performance metric.

Borel measurable functions. Just about all functions that one may encounter are Borel
measurable. Functions that are not Borel measurable do exist but are known to

mathematicians only as mathematical peculiarities.

Cascade-correlation learning method starts with a network without any hidden neu-
rons and systematically increases their number during training until the required

performance is achieved.

Cauchy sequence is a sequence {a, } of real numbers for which for every e > 0, there

exists a positive integer ng such that |a,, — a,| < €, whenever m > n > ny.

Classification is a task in which the desired responses are restricted to a finite set of

values.
Closure. Cl(A) = A U {Limit points of A}.
Compact set. A closed and bounded subset of R?. Also known as a compact.

Compact in R®. A is a compact in R" if it is a subset of R”, is a closed set, and is a

bounded set [90].

Convergence, Pointwise. If {a,} is a sequence of non-random real variables then a,,
converges to a, i.e., a, — a as n — o, if there exists a real number a such that
for any € > 0, there exists an integer N, sufficiently large that |a,, — a| < e for all

n > N, [155]. Also known as deterministic convergence.

Convergence in distribution. If {a,} is a sequence of random variables having a distri-
bution function {F : F,,(a) = Pla, < a} then a, converges to F' in distribution,

Le. an % F|iff |F,,(a) — F(a)] — 0 for every continuity point a of F' [155].

Convergence in probability. If {a,} is a sequence of random variables then a, con-
verges to a in probability, i.e. a, i a, if there exists a real number a such that
for any € > 0, P[|la, —a|] <] - 1 as n — oo. Also known as weak conver-

gence [155].

125 GLOSSARY

Convergence in the mean. If {a, } is a sequence of random variables then a,, converges
to a in the mean if ap % E {|d, — a|} = 0, where E{a} represents the estimated

value of a.

Convergence in the mean squared sense. If {a,} is a sequence of random variables
~ . . Iim ~ 2 _
then a, converges to a in the mean squared sense if o, 5 E {|an — al } =0,

where E{a} represents the estimated value of a.

Convergence with probability 1. If {a,} is a sequence of random variables then a,
. oy . ~ ~ P=1 . i

converges with probability 1 to a, i.e. @, — a as n — oo or a, — a, if L

Pla, = a] = 1 for some real number a. Also known as almost sure convergence,

convergence almost everywhere, and strong convergence. [155]

Convergence, Uniform The property that all of a family of functions or series on a
given set converge at the same rate throughout the set; that is, for every ¢ > 0
there is a single N such that for all points in the set , | fi(2) — fn(2)] < & for all

m,n > N and similarly for uniform convergence as x tends to a value a [20].

Cost function is the quantity that is to be minimised in an optimisation experiment.
In the case of feedforward networks this quantity is usually the RMS error in the

output of the network. Also known as error measure.
Cover of a set A is a collection of sets {T;} whose union contains A [90].
Cover, Open. It is an open cover of {T;} if each T; is open [90].
Cover, Sub- of a given cover is a subcollection whose union also contains A [90].

Cross-validation, n-fold. The data set is divided equally into k£ randomly selected,
mutually exclusive subsets called folds. & — 1 networks are trained sequentially
on all combinations of k—1 folds, while the performance of the trained networks is
tested on the one remaining folds. The average of k — 1 such errors is an estimate

of the generalisation performance metric.

Decision sensitivity is the likelihood that an event will be detected if it occurs. It is

the ratio of true positives to the sum of true positives and false negatives. This

126 GLOSSARY

metric is especially of importance when it is critical that a an event be detected.

Also known as True Positive Ratio [34].

Decision specificity is the likelihood that the absence of an even is detected given that
it is present. It is the ratio of the true negatives to all negatives. Also known as

True Negative Ratio [34].

Decision surface is the plot of the response of an output neuron with respect to the

inputs.
Denseness. A set A is dense in a set S if A C S and Cl(A4) = S.

Denseness, Uniform. A set of functions A is uniformly dense in C(R%) on the compact
set K C R? if for all f € C(R?) and every ¢ > 0 there exists f € A such that

sup{|f(x) — f(x)| : x € K} < & [137].

Denseness, Uniform on compacta. A set of functions A is uniformly dense on com-

pacta in C(R?) if it is uniformly dense on every compact subset of R? [137].

Disjunctive normal form (DNF). The form of a logical expression consisting of a single
conjunction (-) of a set of disjunctions(+). All logical expressions are expressible

in this form [61].

Effective sample size (for classification learning tasks) is the number of examples rep-

resenting the smallest classification group [95].

EM algorithm. Expectation Maximisation algorithm calculates the probability density

of observations based on parameters and not observations [117].

Epoch is the cycle in which all examples in the training set are presented to the net-

work.

Ergodic process. A random process is ergodic if its ensemble and temporal averages

are the same.

Error surface is the plot of the cost-function with respect to all of the weights in a

network.

127 GLOSSARY

Feedforward network consists of a layer of inputs, zero or more layers of hidden neu-
rons, and an output layer of neurons. Generally all neurons in adjacent layers
are fully connected to each other with feedforward synapses only. There are no

intra-layer synapses. Also known as the multilayer perceptron.

Fit, Over- An over-fit is due to the trained network having a higher complexity than
the concept embedded in the training data. Also known as memorisation and

over-specialisation.

Fit, Under- An under-fit is caused by the trained network having a complexity lower

than that of the concept embedded in the training data.

Forward pass. The process by which a network computes the output vector in response

to an input vector. Also known as recall.

Function, Analytic. f € C(R) is analytic at a € R with a radius of convergence r >
0 if there is an infinite sequence of real numbers, {c,}, n > 0, such that for

|z —al <7, > 07 cn(x —a)” converges and f(x) =Y " cp(x —a)™ [137]

Function, Superanalytic. f € C(R) is superanalytic at « € R with a radius of conver-
gence 7 > 0 if there is an infinite sequence of real numbers, {c,}, n > 0, and if
for every n > 1, ¢, # 0, such that for |z —a| < r, >0° cn(x —a)” converges

and f(z) = T g eule — a)" [137]

Function approximation is a task in which the desired output values are continuous.

Also known as regression.

Functional is a scalar-valued continuous linear function defined on a normed linear

space.
Functional, Linear on a linear space E over R is a linear transformation of F into R.

Functional, linear, Bounded. A bounded linear transformation of a normed linear sp-
ace E over R into the normed linear space R is called a bounded linear functional

on F.

128 GLOSSARY

Generalisation performance is the accuracy of decision of a trained network on a set

of data which is similar to but not the same as the training data set.

Hahn-Banach theorem. Let M be a linear subspace of a normed linear space N, and
let f be a functional defined on M. Then f can be extended to a functional fj

defined on the whole space N such that || fo|l = || f]l-

If M. is a closed linear subspace of IV and x(is a vector not in M., then there exists
a functional fy in the conjugate space N* such that fo(M.) = 0 and fo(xg) #

0 [133).

Hebbian learning. The main idea behind Hebbian learning is that the synapse between

two neurons should be strengthened if they fire simultaneously.

Hidden layer is the layer of neurons which is not directly connected to the network

inputs or outputs.

Homogeneity property. A set of functions A fulfils the homogeneity property if f € A
and ¥ € R = 9Jf € A.

Inequality, triangle. |a + 0| < |a| + ||

k-nearest neighbours is a clustering algorithm that minimises the the sum of squares

of distances between the training data and k points.

Ly-norm measures is a popular form of the cost function for feedforward networks.

8=

J

E(W)= (Y Iti—ol” |, p=12,.. 0, (7.1)
j=1

where t; is the target or desired value of the jth output, and o; is its value

computed by the network.

Learning is the process in which a feedforward network is forced to adjust its weights
such that the network’s response to a given input vector becomes closer to the

desired response.

129 GLOSSARY

Learning, Batch. The type of learning during which weights are updated at the end

of every epoch. Also known as off-line learning.

Learning, In-situ differs from on-line learning in that the former is the property of a
network requiring the deployed network to have adaptive weights, whereas the
later is a property of the learning procedure, requiring the weights to be updated

on the presentation of every example.

Learning, On-line. The type of learning during which weights are updated after the
presentation of every training example. Also known as pattern and incremental

learning.

Learning, Supervised The learning process in which a system’s internal parameters
are modified in order to minimise the error in its output with respect to a desired

value.

Learning, Unsupervised The learning process in which a system’s internal parameters

are modified so that similar input patterns result in similar outputs.
Learning rate determines the size of the weight modification at each training step.

Likelihood is the probability density of observations calculated from parameters and

not observations [117].

Limit Point. A point p is a limit point of A if every neighbourhood of p contains a

point ¢ # p such that ¢ € A.

Linear separability. The property of a classification task by which the members of one

class can be separated from the ones from all other classes by a single hyperplane.

Loading problem, The. The problem of finding the optimal weight values for a given

network such that the network performs the required mapping.

Logistic discriminant analysis chooses classification hyperplanes with respect to max-
imising a conditional likelihood cost-function and not optimising a quadratic cost-

function which is the case for linear discriminant analysis [93].

130 GLOSSARY

Margin, £,. Error in the output of a neuron is not backpropagated if it is within this

small margin [139].
Minima, Global. The points of minimum error on an error surface.

Minima, Local. The points of zero gradient on an error surface which are not global

minima.

Mixture representation of data use a linear combination of Gaussian distributions to

represent arbitrary distributions [10].

Momentum is a training parameter used in a very common variation on standard
error backpropagation learning procedure. It controls the effect of the last weight

modification on the current weight update.
n-layer network is a feedforward network with n — 1 hidden layers.

NP-complete problems. (non-polynomial time problems) The time required to find
the optimal solution for this class of problems grows exponentially with the size

of the problem. Also known as intractable problems.
Neural network, Artificial is a set of interconnected artificial neurons.

Neuron, Artificial is the fundamental processing element in an artificial neural net-
work. It performs a weighted sum of its inputs, adds the offset value to that
sum, and then outputs a certain transform of that sum. Also known as node and

processing element (PE).

Ockham’s Razor is the conjecture that if, for a given problem, two solutions with
similar performances are available then the one with the lower computational

complexity should be preferred.

Offset is the value added to the weighted sum before the transform is applied to com-

pute a neuron’s output. Also known as threshold and bias.

Over-trained networks have a complexity higher than what is required to learn the

concept embedded in training data. They act as look-up tables for the training

131 GLOSSARY

data and are poor generalisers.
Perceptron is a feedforward network with no hidden neurons.

Probability, Prior is the probability assigned to an event in advance of any empirical

evidence. Also known as ‘a priori’ probability.

Probability, Posterior is the probability assigned to an event based on observations.

Also known as ‘a posteriori’ probability.

Projection pursuit regression is a generalisation of the feedforward network in that it
allows more than one type of activation function in the hidden layer. These non-
homogeneous activation functions are data-dependent and constructed during

learning [66].

Regularisation A class of methods designed to avoid overfitting to the training data

by enforcing smoothness of the fit.

Ridge regression. The precision of least-squares estimates gets worse with with an
increase in dependence between the input variables. Ridge regression estimators
are more precise in those situations and are obtained as the estimators whose
distance to an ellipsoid (the ‘ridge’) centred at a least-squares estimate from the

origin of a parameter space is a minimum [46].

Ridging, Constrained. Optimisation procedure in which some norm of the weights is

constrained to a specific value [130].

Ridging, Penalised. Optimisation procedure in which the cost function is augmented

by a penalty term [130].

Ridging, Smoothed. Optimisation procedure in which noise is introduced in the in-

puts [130].

Riesz representation theorem. Let z* be a bounded linear functional on the Banach
space Cr([a,b]). Then there is a real-valued function « of bounded variation on
[a, b] such that x*(f) = f:fdoz for all f € Cg([a,b]). Further, if * is a positive

linear functional, then « is increasing on [a, b] [23].

132 GLOSSARY

RMS error, E,_ ., is computed by summing the output layer errors for all examples
in a training or test set, dividing the sum by the total number of examples and the
number of the output layer neurons, and taking the square root of the resultant.
The output layer error is computed by summing the squares of the individual
neuron errors with respect to the desired output. An individual output-layer

neuron’s error is set to zero if it is less than the margin.

Sampling with replacement may result in successive samples being not mutually ex-
clusive, some of the examples may never appear in any of the samples, and there

may be repetitions within an individual sample.

Separates points. A family of functions A separates points on a set S if for every

x,y € S,x # vy, there exists f € A such that f(z) # f(y) [136].

Set, Closed. A subset M of metric space IV is a closed set if it contains each of its

limit points.

Set, Finite. A is finite if all of its elements can be displayed as {aq, as, ..., a, } for some

integer n [90].

Set, Open is the subset G of the metric space X if each point of G is the centre of

some open sphere contained in G.

Shattered. If a set of functions F' includes all possible dichotomies on a set S of points,

then S is said to be shattered by F. [6]

Shrinkage. The difference between the training set accuracy of a network and its ac-

curacy on a test set.

Sigmoidal functions. Definitions vary but are generally taken to be bounded, mono-

tone, and continuous, e.g. logistic and tanh(-) functions.

Simulated annealing is a stochastic optimisation technique inspired by the physical

process of annealing.

133 GLOSSARY

Skip-layer synapses. Synapses connecting neurons in two non-adjacent layers. Also
known as short-cut synapses [78]. Known as main effects in the statistical litera-

ture [127].

Smoothing spline modelling is piecewise approximation by polynomials of degree n
with the requirement that the derivatives of the polynomials are continuous up

to degree n — 1 at the junctions [20].

Softmax. The purpose of the softmax activation function is to make the sum of the
output neuron responses equal to one, so that the outputs are interpretable as

posterior probabilities. Also known as the multiple-logistic function.
Space, Banach is a complete normed linear space.
Space, Compact is a topological space in which every open cover has a finite subcover.

Space, Complete metric is a metric space in which every Cauchy sequence is conver-

gent.

Space, Conjugate. N* is the set of all continuous linear transforms of the normed

linear space N into R.

Space, Eucledian is the metric space (R, d) such that d(z,y) = (31_; (z, — y?n)Q)l./2

r=1

Space, Hausdorff is a topological space, T', in which any two given distinct points x, y

are such that there exist disjoint open subsets U, V containing x, y respectively.

Space, L, consists of all measurable functions f defined on a measure space M with

measure m which are such that |f(x)|P is integrable, with the norm taken as

£l = (f 1f (2)Pdm(2)) 7.

Space, Normed linear over R is a pair {E, | - ||}, where E is linear space over R and

|l -|l is a norm on E. Normed linear space is a metric space with the metric being

[l = yll.

Space, Topological is a pair (X, T), where X a non-empty set and T is collection

of subsets of X such that the subsets are closed under union and intersection

134 GLOSSARY

operations.

Span of a set of functions. For any function f € C(R) and r» > 0, f|(—r,7) de-
notes the restriction of f to the interval (—r,7), and for any class of function
F, F|(-r,r) denotes {f|(—r,r) : f € F}. For any F defined on a set O, the
span of F, sp(F), denotes the closure of the set of finite linear combinations

of elements of F in the topology of uniform convergence on compact subsets of

O [137].

Sphere, Open. S,(xg) with centre zyp and radius r is the subset of the metric space X

with metric D defined by S,(zq) = {x : d(z,z¢) < r}.

Stationary, strongly. If a random variable X is strongly stationary then the distribu-

tion of X (¢) is independent of the time ¢ [45].
Subset, Proper. A is a proper subset of Bif A C B and B ¢ A.

Subspace, Linear is the non-empty subset, M, of a linear space if (z+y) € M whenever

x € M and y € M, and if ax € M whenever x € M, where « is a scalar.
Supremum is the least upper bound for a set.

Synapse is a measure of the effect that a neuron’s output has on the output of another
neuron at the other end of the synapse. Also known as connection, edge, and

weight.

Testing is the process of verifying the function of a trained network against a set of

examples which is different from the training examples set.

Train-and-test. A random sample containing one half of the total number of examples
is selected. This subset is used to train the network while the remaining examples
are used to test the network once it has been trained. The performance of the
trained network on the test set is an estimate of the generalisation performance

metric.

Training See Learning.

135 GLOSSARY

Training example is a pair: an input vector, and the desired response to that input

vector.

Vanishes at no point. A family of functions A vanishes at no point of the set S if for

each x € S there exists f € A such that f(x) # 0 [136].
Weight is the value of a synapse or an offset.

Weight decay is a common regularisation technique used in feedforward network train-
ing in which the cost-function is augmented with a term which penalises large

weight values.
Weight depth is the number of binary bits in a weight.

Weight elimination is a regularisation technique used in feedforward network training
in which the cost-function is augmented with a term which penalises the number

of non-zero weights [51,81,110,152].

Weight perturbation is a hardware-friendly alternative to BP learning. In this meth-
od, all of the weights are perturbed in turn and the associated change in the

output of the network is used to approximate local gradients [59].

Weight sharing is a regularisation technique used in feedforward network training in
which the cost-function is augmented with a term which penalises the number of

independent weights [105,122].

References

[1]

[4]

8]

1040EZ: Income tax return for single and joint filers with no dependents. Inter-
nal Revenue Service, Department of Treasury, United States of America, 1994.

Available as ftp://ftp.fedworld.gov/pub/irs-pdf/f1040ez.pdf.
Anderson, M. Private communication, July 1996.

Babri, H. A. and Tong, Y. Deep feedforward nets: Applications to pattern recog-
nition. In Proceedings of the IEEE International Conference on Neural Networks,
volume 3, pages 1422-1426, Washington, DC, June 1996. IEEE Press, New York,
NY.

Barron, A. R. Universal approximation bounds for superpositions of a sigmoidal

function. IEEE Transactions on Information Theory, IT-39:930-945, 1993.

Battiti, R. First- and second-order methods for learning: Between steepest de-

scent and Newton’s method. Neural Computation, 4:141-166, 1992.

Baum, E. B. On the capabilities of multilayer perceptrons. Journal of Complexity,

4:193-215, 1988.

Baum, E. B. and Haussler, D. What size net gives valid generalization? Neural

Computation, 1:151-160, 1989.

Bennett, P. H., Burch, T. A., and Miller, M. Diabetes mellitus in American

(Pima) Indians. Lancet, 2:125-128, 1971.

Bioch, J. C., van der Meer, O., and Potharst, R. Classification using Bayesian

neural nets. In Proceedings of the IEEE International Conference on Neural

136

137

REFERENCES

[18]

[19]

[20]

[21]

Networks, volume 3, pages 1488-1493, Washington, DC, June 1996. IEEE Press,
New York, NY.

Bishop, C. M. Mixture density networks. Technical report NCRG /4288, Depart-
ment of Computer Science and Applied Mathematics, Aston University, Birm-

ingham, England, February 1994.

Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, 1995.

Bishop, C. M. Neural Networks for Pattern Recognition, chapter 3. In [11], 1995.
Bishop, C. M. Neural Networks for Pattern Recognition, chapter 8. In [11], 1995.
Bishop, C. M. Neural Networks for Pattern Recognition, chapter 7. In [11], 1995.
Bishop, C. M. Neural Networks for Pattern Recognition, chapter 1. In [11], 1995.
Bishop, C. M. Neural Networks for Pattern Recognition, chapter 9. In [11], 1995.

Bishop, C. M., Haynes, P. S., Smith, M. E. U., Todd, T. N., and Trotman,
D. L. Real-time control of a tokamak plasma using neural networks. Neural

Computation, 7(1):206—-217, 1995.

Blum, A. L. and Rivest, R. L. Training a 3-node neural networks is NP-complete.
Neural Networks, 5:117-127, 1992.

Borggaard, C., Madsen, N. T., and Thodberg, H. H. In-line image analysis in the
slaughter industry, illustrated by beef carcass classification. Reference number
31.616, manuscript number 1336E, Danish Meat Research Institute, Roskilde,

Denmark, June 1996.

Borowski, E. J. and Borwein, J. M. Dictionary of Mathematics. HarperCollins,

Great Britain, 1989.

Boser, B., Guyon, I., and Vapnik, V. A training algorithm for optimal margin
classifiers. In Proceedings of the Computational Learning Theory ACM Workshop,
Pittsburgh, PA, 1992.

138

REFERENCES

[22]

[23]

[25]

[26]

[28]

Brause, R. W. The error-bound descriptional complexity of approximation net-

works. Neural Networks, 2(6):177-187, 1993.

Brown, A. L. and Page, A. FElements of Functional Analysis. Van Nostrand
Reinhold, London, 1970.

Buckley, J. M. and Richardson, M. B. Control of a copper laser using neural
networks. IEE Computing and Control Engineering Journal, 7(3):145-152, June

1996.

Carpenter, G. A. and Markuzon, N. ARTMAP-IC and medical diagnosis: In-
stance counting and inconsistent cases. Technical report CAS/CNS-96-017, De-
partment of Cognitive and Neural Systems, Boston University, Boston, MA, May
1996.

Carroll, S. M. and Dickinson, B. W. Constructing the neural nets using the
Radon transform. In Proceedings of the International Joint Conference on Neural
Networks, volume 1, pages 607-611, Washington, DC, 1989. IEEE Press, New

York, NY.

Chen, T., Chen, H., and Liu, R. Approximation capability in C(R") by multi-
layer feedforward networks and related problems. IEEE Transactions on Neural

Networks, 1(6):25-30, 1995.

Chieueh, T. D. and Goodman, R. M. Learning algorithms for neural networks
with ternary weights. In First Annual Meeting of International Neural Networks

Society, Boston, MA, September 1988. Abstract in Neural Networks, 1:166, 1988.

Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathe-

matics of Control, Signals, and Systems, 6:303—-314, 1989.

Denker, J. S. and Wittner, B. S. Network generality, training required, and
precision required. In Denker, J. S., editor, Neural Networks for Computing,
pages 219-222, Snowbird, UT, 1986. American Institute of Physics, New York,

NY.

139

REFERENCES

[31]

[32]

[33]

[35]

[36]

[37]

[39]

[40]

[41]

Drucker, H. and Le Cun, Y. Improving generalization performance using double

backpropagation. IEEE Transactions on Neural Networks, 3:991-997, 1992.
Dugundji, J. Topology. Allyn and Bacon, Boston, MA, 1966. Theorem XI.10.1.

Dundar, G. and Rose, K. The effect of quantization on multilayer neural nets.

IEEE Transactions on Neural Networks, 6(6):1446-1451, 1995.

Eberhart, R. C., Dobbins, R. W., and Hutton, L. V. Performance metrics. In
Eberhart, R. C. and Dobbins, R. W., editors, Neural Network PC Tools: A
Practical Guide, chapter 7, pages 161-176. Academic Press, London, England,
1990.

Fahlman, S. E. Fast-learning variations on back-propagation: An empirical study.
In Touretzky, D., Hinton, G., and Sejnowski, T., editors, Proceedings of the 1988
Connectionist Models Summer School, pages 38-51, Pittsburgh, PA, 1989. Mor-

gan Kaufmann, San Mateo, CA.

Fahlman, S. E. The Cascade-correlation learning algorithm on the MONK’s

problems. In Thurn et al. [143], chapter 10.

Fahlman, S. E. and Lebiere, C. The cascade-correlation learning architecture.
In Touretzky, D., editor, Advances in Neural Information Processing Systems,

volume 2, pages 524-532. Morgan Kaufmann, San Mateo, CA, 1990.

Fausett, L. Fundamentals of Neural Networks: Architectures, Algorithms and

Applications, chapter 1. Prentice Hall, Englewood Cliffs, NJ, 1994.

Fausett, L. Fundamentals of Neural Networks: Architectures, Algorithms and

Applications, chapter 6. In [38], 1994.

Fiesler, E., Choudry, A., and Caulfield, H. J. A weight discretization paradigm for
optical neural networks. In Proceedings of the International Congress on Optical

Science and Engineering, pages 164-173, Bellingham, Washington, 1990. SPIE.

Funahashi, K. On the approximate realization of continuous mappings by neural

networks. Neural Networks, 2:183-192, 1989.

140

REFERENCES

[42]

[45]

[46]

[47]

Gallant, S. I. Neural Network Learning and Ezxpert Systems, chapter 11. MIT

Press, Cambridge, MA, 1993.

Gallant, S. I. Neural Network Learning and Expert Systems, chapter 13. In [42],
1993.

Geman, S., Bienenstock, E., and Doursat, R. Neural networks and the

bias/variance dilemma. Neural Computation, 4:1-58, 1992.

Grimmett, G. R. and Stirzaker, D. R. Probability and Random Processes. Claren-

don, Oxford, England, second edition, 1992.

Gruber, M. H. J. Regression Estimators: A Comparative Study. Academic Press,

London, 1990.

Guyon, 1., Poujaud, I., Personnaz, L., Dreyfuss, G., Denker, J., and Le Cun,
Y. Comparing different neural network architectures for classifying handwritten
digits. In Proceedings of the IEEE International Conference on Neural Networks,
volume 2, pages 127-132, Washington, DC, 1989. IEEE Press, New York, NY.
The numeral database has been kindly made available by Isabelle at ftp://-

hope.caltech.edu/pub/mackay/data/att.database.

Guyon, I., Vapnik, V., Boser, B., and Solla, S. Structural risk minimisation for
character recognition. In Touretzky, D. S., editor, Advances in Neural Information

Processing Systems, volume 4. Morgan Kaufmann, San Mateo, CA, 1992.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers,

chapter 23. Oxford University Press, Oxford, England, fifth edition, 1979.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers,
chapter 23. In [49], fifth edition, 1979. Theorem 439.

Hassibi, B., Stork, D. G., and Wolf, G. J. Optimal brain surgeon and general
network pruning. In Proceedings of the IEEE International Conference on Neural

Networks, volume 1, pages 293-299, San Francisco, CA, 1993.

141

REFERENCES

[52]

[56]

[57]

[58]

Haykin, S. Neural Networks: A Comprehensive Foundation, chapter 1. Maxwell
Macmillan, New York, NY, 1994.

Haykin, S. Neural Networks: A Comprehensive Foundation, chapter 6. In [52],
1994.

Haykin, S. Neural Networks: A Comprehensive Foundation, chapter 8. In [52],
1994.

Hecht-Nielsen, R. Theory of the backpropagation neural network. In Proceedings
of the International Joint Conference on Neural Networks, volume 1, pages 593—

606, Washington, DC, 1989. IEEE Press, New York, NY.

Heemskerk, J. N. H. Neurocomputers for Brain-Style Processing. Design, Imple-
mentation and Application. PhD thesis, Unit of Experimental and Theoretical
Psychology, Leiden University, The Netherlands, 1995. A draft version of Chapter

3 is available as ftp://ftp.mrc-apu.cam.ac.uk/pub/nn/murre/neurhard.ps.

Hinton, G. E. Learning distributed representations of concepts. In Proceedings
of the Eighth Annual Conference of the Cognitive Science Society, pages 1-12,
Ambherst, MA, 1986. Erlbaum, Hillsdale, NJ. Reproduced in Parallel Distributed
Processing: Implications for Psychology and Neurobiology, Morris, R. G. M. edi-
tor. Oxford University Press, Oxford, England, 1989.

Hoehfeld, M. and Fahlman, S. E. Learning with limited numerical precision
using the cascade-correlation algorithm. Preprint, School of Computer Science,

Carnegie-Mellon University, Pittsburgh, PA, 1991.

Hollis, P. W. and Paulos, J. J. A neural network learning algorithm tailored for
VLSI implementation. IEEE Transactions on Neural Networks, 5(5):784-791,

1994.

Holts, J. H. and Hwang, J.-. N. Finite precision error analysis of neural network
hardware implementations. IEEE Transactions on Computers, 42(3):281-290,

1993.

142

REFERENCES

[61]

[62]

[63]

[64]

[66]

[67]

[68]

Horne, B. G. and Hush, D. R. On the node complexity of neural networks. Neural
Networks, 7(9):1413-1426, 1994.

Hornik, K. Some new results on neural net approximation. Neural Networks,

6:1069-1072, 1993.

Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward networks are

universal approximators. Neural Networks, 2:359-366, 1989. Reprinted in [157].

Hornik, K., Stinchcombe, M., White, H., and Auer, P. Degree of approximation
results for feedforward networks approximating unknown mappings and their

derivatives. Neural Computation, 6:1262—-1275, 1994.

Hush, D. R. and Horne, B. G. Progress in supervised neural networks: What’s
new since Lippmann. I[EEE Signal Processing Magazine, 10(1):8-39, January

1993.

Hwang, J. N., Lay, S. R., Maechler, M., Martin, R. D., and Schimert, J. Re-
gression modelling in back-propagation and projection pursuit learning. IEFE

Transactions on Neural Networks, 5(3):342-353, 1994.

Ienne, P. and Kuhn, G. Digital systems for neural networks. In Papamichalis,
P. and Kerwin, R., editors, Digital Signal Processing Technology, volume CR57
of Critical Reviews Seires, pages 314-345. SPIE Optical Engineering Press,
Orlando, FL, 1995. Also available as ftp://mantraftp.epfl.ch/mantra/-

ienne.spie95.A4.ps.gz.

Ito, Y. Approximation of continuous functions on R? by linear combinations of
shifted rotations of a sigmoid function with and without scaling. Neural Networks,

5:105-116, 1992.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by simulated

annealing. Science, 220:671-680, 1983.

Kiselewich, S. J. and Turner, D. T. Using a neural network to distinguish be-

tween deployment events and non-deployment events in a supplemental inflatable

143

REFERENCES

[71]

[72]

[73]

[74]

[75]

[77]

restraint system. Automotive Engineering, 103(6):S5, June 1995. Related article

available as http://www.delco.com/techpapers/tech_neural.html.

Knowler, W. C., Bennet, P. H., Hamman, R. F., and Miller, M. Diabetes incidence
and prevalence in Pima Indians: A 19-fold greater incidence than in Rochester,

Minnesota. American Journal of Epidemiology, 108:497-505, 1978.

Knowler, W. C., Pettitt, D. J., Savage, P. J., and Bennet, P. H. Diabetes inci-
dence in Pima Indians: Contributions of obesity and parental diabetes. American

Journal of Epidemiology, 113:144-156, 1981.

Koistinen, P. and Holmstrom, L. Kernel regression and backpropagation training
with noise. In Touretzky, D. S., editor, Advances in Neural Information Processing

Systems, volume 4, pages 1033-1039. Morgan Kaufmann, San Mateo, CA, 1992.

Kuan, C. M. and Hornik, K. Convergence of learning algorithms with constant

learning rates. IEEE Transactions on Neural Networks, 2(5):484-489, 1991.

Kushner, H. Asymptotic global behavior for stochastic approximations and diffu-
sions with slowly decreasing noise effects: Global minimisation via Monte Carlo.

SIAM Journal on Applied Mathematics, 47:169-185, 1987.

Kwan, H. K. and Tang, C. Z. Designing multilayer feedforward neural networks
using simplified sigmoid activation functions and one-power-of-two weights. FElec-

tronics Letters, 28(25):2343-2344, December 1992.

Kwan, H. K. and Tang, C. Z. Multiplierless multilayer feedforward neural net-
work design suitable for continuous input-output mapping. Flectronics Letters,

29(14):1259-1260, July 1993.

Lang, K. J. and Witbrock, M. J. Learning to tell two spirals apart. In Touretzky,
D., Hinton, G., and Sejnowski, T., editors, Proceedings of the 1988 Connectionist
Models Summer School, pages 52—-59, Pittsburgh 1988, 1989. Morgan Kaufmann,
San Mateo, CA.

144

REFERENCES

[79]

[30]

[82]

[34]

[85]

[36]

[87]

Le Cun, Y. A learning scheme for asymmetric threshold networks. In Proceedings

of Cognitiva 85, pages 599-604, Paris, France, 1985.

Le Cun, Y. Modeles connexionistes de l'apprentissage. PhD thesis, Université

Peierre et Marie Curie, 1987.

Le Cun, Y., Denker, J. S.; and Solla, S. A. Optimal brain damage. In Touretzky,
D. S., editor, Advances in Neural Information Processing Systems, volume 2,

pages 598-605, Denver 1989, 1990. Morgan Kaufmann, San Mateo, CA.

Le Cun, Y., Kanter, I., and Sola, S. A. Eigenvalues of covariance matrices:
Application to neural network learning. Physical Review Letters, 66(18):2396—
2399, 1991.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. Multilayer feedforward
networks with nonpolynomial activation functions can approximate any function.

Neural Networks, 6:861-867, 1993.
Lisboa, P. G. J. Private communication, September 1996.

Lisboa, P. G. J. and Taylor, J. G., editors. Workshop on Neural Network Appli-
cations and Tools, Liverpool, England, September 1993, 1994. IEEE Computer

Society Press, Los Alamitos, CA.

MacKay, D. A practical Bayesian framework for backpropagation networks. New-

ral Computation, 4(3):448-472, 1992.

MacKay, D. J. Probable networks and plausible predictions — a review of practical
Bayesian methods for supervised neural networks. Technical report, Cavendish
Laboratory, University of Cambridge, Cambridge, England, 1995. Available as

ftp://mraos.ra.phy.cam.ac.uk/pub/mackay/network.ps.Z.

Marchesi, M., Benvenuto, N., Orlandi, G., Piazza, F., and Uncini, A. Design of
multi-layer neural networks with power-of-two weights. In IEEE ISCS, volume 4,

pages 2951-2954, New Orleans 1-3 May 1990, 1990. IEEE Press, New York, NY.

145

REFERENCES

[89]

[98]

Marchesi, M., Orlandi, G., Piazza, F., and Uncini, A. Fast neural networks

without multipliers. IEEE Transactions on Neural Networks, 4(1):53-62, 1993.

Marsden, J. E. FElementary Classical Analysis. W. H. Freeman, San Francisco,

1974.

Masters, T. Signal and Image Processing with Neural Networks: A C++ Source-
book, chapter 3. Wiley, New York, NY, 1994.

Mauduit, N., Duaranton, M., Gobert, J., and Sirat, J. A. L Neuro 1.0: A piece
of hardware LEGO for building neural network systems. IEEE Transactions on

Neural Networks, 3(3):414-422, 1992.

Michie, D., Spiegelhalter, D. J., and Taylor, C. C., editors. Machine Learning,

Neural and Statistical Classification. Ellis Horwood, New York, 1994.

Michie, D., Spiegelhalter, D. J., and Taylor, C. C., editors. Machine Learning,

Newral and Statistical Classification, chapter 6. In Michie et al. [93], 1994.

Michie, D., Spiegelhalter, D. J., and Taylor, C. C., editors. Machine Learning,

Neural and Statistical Classification, chapter 7. In Michie et al. [93], 1994.

Michie, D., Spiegelhalter, D. J., and Taylor, C. C., editors. Machine Learning,

Newral and Statistical Classification, chapter 9. In Michie et al. [93], 1994.

Moody, J. E. The effective number of parameters: An analysis of generalisa-
tion and regularization in nonlinear learning systems. In Moody, J. E., Hanson,
S. J., and Lippmann, R. P., editors, Advances in Neural Information Processing

Systems, volume 4. Morgan Kaufmann, San Mateo, CA, 1992.

Murphy, P. M. and Aha, D. W. UCI Repository of Machine Learning.
Department of Information and Computer Science, University of California,
Irvine, CA, 1995. The repository is accessible as ftp://ics.uci.edu/pub/-

machine-learning-databases/.

Murray, A. F. Multilayer perceptron learning optimised for on-chip implementa-

tion — A noise robust system. Neural Computation, 4(3):366-381, 1992.

146

REFERENCES

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Murray, A. F. and Edwards, P. J. Synaptic weight noise during multilayer per-
ceptron training: Fault tolerance and training improvements. IEEE Transactions

on Neural Networks, 4(4):722-725, 1993.
Mustafa, T. Private communication, June 1994.

Neal, R. M. Bayesian Learning in Neural Networks. PhD thesis, Department of

Computer Science, University of Toronto, Canada, 1995.

Nelson, M. C. and Illingworth, W. T. A Practical Guide to Neural Nets. Addison-
Wesley, Reading, MA, 1991.

Nilsson, N. Learning Machines: Foundations of Trainable Pattern Classifiers.
McGraw Hill, New York, NY, 1965. Republished as The Mathematical Foun-
dations of Learning Machines, Morgan Kaufmann Publishers, San Mateo, CA,

1990.

Nowlan, S. J. and Hinton, G. E. Simplifying neural networks by soft weight-

sharing. Neural Computation, 4(4):473-493, 1992.

Obradovic, Z. and Parberry, I. Computing with discrete multi-valued neurons.

Journal of Computer and System Sciences, 45:471-492, 1992.

Oja, E. Position paper before panel discussion on Neural Networks and Sta-
tistical Models. In Proceedings of the IEEE International Conference on Neural
Networks, pages 20-21, Washington, DC, June 1996. IEEE Press, New York, NY.

Oteki, S., Hashimoto, A., Furuta, T., Watanabe, T., Stork, D. G., and Eguchi,
H. A digital neural network vlsi with on-chip learning using stochastic pulse
encoding. In Proceedings of the International Joint Conference on Neural Net-
works, volume 3, pages 3039-3045, Nagoya, Japan, October 1993. IEEE Press,
New York, NY.

Parker, D. B. Learning-logic: Casting the cortex of the human brain in silicon.
Technical report TR-47, Center for Computational Research in Economics and

Management Science, MIT, Cambridge, MA, April 1985.

147

REFERENCES

[110]

[111]

[112]

[113]

[114]
[115]
[116]
[117)

[118]

[119]

[120]

[121]

[122]

Prechelt, L. Adaptive parameter pruning in neural networks. Technical report

TR-95-009, International Computer Science Institute, Berkeley, CA, March 1995.

Proceedings of the IEEE International Conference on Neural Networks, Washing-
ton, DC, June 1996. IEEE Press, New York, NY.

Reyneri, L. M. and Filippi, E. An analysis on the performance of silicon imple-
mentations of backpropagation algorithms for artificial neural networks. IEFE

Transactions on Computers, 40(12):1380-1389, 1991.

Ripley, B. D. Pattern Recognition and Neural Networks. Cambridge University
Press, Cambridge, England, 1996.

Ripley, B. D. Pattern Recognition and Neural Networks, chapter 1. In [113], 1996.
Ripley, B. D. Pattern Recognition and Neural Networks, chapter 5. In [113], 1996.
Ripley, B. D. Pattern Recognition and Neural Networks, chapter 6. In [113], 1996.
Ripley, B. D. Pattern Recognition and Neural Networks. In [113], 1996. Glossary.

Robbins, H. and Monro, S. A stochastic approximation method. Annals of

Mathematical Statistics, 22:400-407, 1951.

Rudin, W. Principles of Mathematical Analysis, chapter 7. McGraw-Hill, New

York, 1976.

Rudin, W. Principles of Mathematical Analysis, chapter 8. In [119], 1976. The-

orem 8.4.

Rudin, W. Principles of Mathematical Analysis, chapter 8. In [119], 1976. Corol-

lary to Theorem 8.1.

Rumelhart, D. E.,; Hinton, G. E., and Williams, R. J. Learning internal rep-
resentations by error propagation. In Rumelhart et al. [123], chapter 8, pages

318-362.

148

REFERENCES

[123]

[124]

[125]

[126]

[127)

[128]

[129]

[130]

[131]

Rumelhart, D. E., McClelland, J. L., and the PDP research group, editors. Par-
allel Distributed Processing: Explorations in the Microstructure of Cognition, vol-

ume 1. MIT Press, Cambridge, MA, 1986.

Rumelhart, D. E., McClelland, J. L., and the PDP research group, editors. Par-
allel Distributed Processing: Explorations in the Microstructure of Cognition, vol-

ume 2. MIT Press, Cambridge, MA, 1986.

Sarle, W. S. Subject: How can generalization error be estimated? Neural Network
FAQ, part 2 of 7: Learning. Available as ftp://ftp.sas.com/pub/neural/-

FAQ2.html.

Sarle, W. S. Subject: What is backprop? Neural Network FAQ, part 2 of T:

Learning. Available as ftp://ftp.sas.com/pub/neural/FAQ2.html.

Sarle, W. S. Neural network and statistical models. In Proceedings of the 19th
Annual SAS Users Group International Conference, Cary, NC, April 1994. Also

available as ftp://ftp.sas.com/pub/sugil9/neural/neurall.ps.

Sarle, W. S. Neural network implementation in SAS software. In Proceedings
of the 19th Annual SAS Users Group International Conference, Cary, NC, April

1994. Also available as ftp://ftp.sas.com/pub/sugil9/neural/neural?.ps.

Sarle, W. S. Re: Preprocessing data for ANN. Article 17388 of comp.ai.neural-

nets newsgroup, August 1994.

Sarle, W. S. Stopped training and other remedies for overfitting. In Proceedings of
the 27th Symposium on Interface, 1995. Also available as ftp://ftp.sas.com/-

pub/neural/inter95.ps.Z.

Scaletter, R. and Zee, A. Emergence of grandmother memory in feedforward
networks: Learning with noise and forgetfulness. In Waltz, D. and Feldman, J. A.,
editors, Connectionist Models and Their Implications: Readings from Cognitive

Science, pages 309-332. Ableex, Norwood, MA, 1988.

149

REFERENCES

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Sejnowski, T. J. and Rosenberg, C. R. NETtalk: A parallel network that learns
to read aloud. Technical report JHU/EECS-86/01, Department of Electrical
Engineering and Computer Science, John Hopkins University, Baltimore, MD,

1986.

Simmons, G. F. Introduction to Topology and Modern Analysis. McGraw-Hill,
New York, 1963.

Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., and Jo-
hannes, R. S. Using the ADAP learning algorithm to forecast the onset of
diabetes mellitus. In Proceedings of the Symposium on Computer Applica-
tions and Medical Care, pages 261-265. IEEE Computer Society Press, 1988.
The diabetes dataset is available in the directory ftp://ics.uci.edu/pub/-

machine-learning-databases/pima-indians-diabetes/.

Staib, W. E. and Staib, R. B. The intelligent arc furnace controller: A neural
network electrode position optimization system for electric arc furnaces. In Pro-

ceedings of the International Joint Conference on Neural Networks. IEEE Press,

New York, NY, 1992.

Stinchcombe, M. and White, H. Universal approximation using multilayer feed-
forward networks with non-sigmoid hidden layer activation functions. In Proceed-

ings of the International Joint Conference on Neural Networks, volume 1, pages

613-617, Washington, DC, 1989. IEEE Press, New York, NY. Reprinted in [157].

Stinchcombe, M. and White, H. Approximating and learning unknown mappings
using multilayer feedforward networks with bounded weights. In Proceedings of
the International Joint Conference on Neural Networks, volume 3, pages 7—16,

San Diego, CA, 1990. IEEE Press, New York, NY. Reprinted in [157].

Tang, C. Z. and Kwan, H. K. Multilayer feedforward neural networks with single
power-of-two weights. IEEE Transactions on Signal Processing, 41(8):2724-2727,

1993.

150

REFERENCES

[139)

[140]

[141]

[142]

[143]

[144]

[145)

[146]

Tesauro, G., He, Y., and Ahmad, S. Asymptotic convergence of backpropagation.
Neural Computation, 1(3):382-391, 1989.

Thodberg, H. H. Private communication, July 1996.

Thodberg, H. H. A review of Bayesian neural network with an application to
near infrared spectroscopy. IEEE Transactions on Neural Networks, 6(1):56-72,

1996.

Thurn, S. B. Backpropagation on the MONK’s problems. In Thurn et al. [143],

chapter 9.

Thurn, S. B., Bala, J., Bloedorn, E., Bratko, 1., Cestnik, B., Cheng, J., Jong,
K. D., Dzeroski, S., Fahlman, S. E., Fisher, D., Hamann, R., Kaufman, K., Keller,
S., Kononenko, 1., Kreuziger, J., Michalski, R. S., Mitchell, T., Pachowicz, P.,
Reich, Y., Vafaie, H., de Welde, W. V., Wenzel, W., Wnek, J., and Zhang, J.,
editors. The MONK’s problems: A performance comparison of different learn-
wng algorithms. Technical reportCMU-CS-91-197. Carnegie Mellon University,
Pittsburgh, PA, December 1990. Also available as ftp://ics.uci.edu/pub/-

machine-learning-databases/monks-problems/thrun.comparison.ps.Z.

Thurn, S. B., Mitchell, T., and Cheng, J. The MONK’s comparision of learning

algorithms — Introduction and survey. In Thurn et al. [143], chapter 1.

Turney, P. D. Cost-sensitive classification: Empirical evaluation of a hybrid ge-
netic decision tree induction algorithm. Journal of Artificial Intelligence Research,
2:369-409, March 1995. Also available as http://www.cs.washington.edu/-

research/jair/volume2/turney95a-html/title.html.

Unnikrishnan, K. P. and Venugopal, K. P. Alopex: A correlation-based learning
algorithm for feedforward and recurrent neural networks. Neural Computation,

6:469-490, 1994.

151 REFERENCES

[147] Venkatesh, S. S. Directed drift: A new linear threshold algorithm for learning
binary weights on-line. Journal of Computer and System Sciences, 46(2):198-217,
1993.

[148] Vincente, C. J. P., Carrabina, J., Girrado, F., and Valderrama, E. Learning
algorithms for feed-forward neural networks with discrete synapses. In Prieto,
A., editor, Artificial Neural Networks, Proceedings of IWANN’91, volume 540 of
Lecture Notes in Computer Sciences, pages 144-152, Granada, Spain, September

1991. Springer—Verlag, Berlin, Germany.

[149] Wahaba, G. Generalization and regularization in nonlinear learning systems. In
Arbib, M., editor, The Handbook of Brain Theory and Neural Networks, pages
426-430. MIT Press, Cambridge, MA, 1995.

[150] Wahba, G., Chong, G., Wang, Y., and Chappel, R. Soft classification, a.k.a risk
estimation, via penalized log likelihood and smoothing spline analysis of variance.
Technical report, Statistics Department, University of Wisconsin, Madison, WI,

1993.

[151] Weigend, A. On overfitting and the effective number of hidden units. In Proceed-

1ngs of the 1993 Connectionist Models Summer School, pages 335-342, 1994.

[152] Weigend, A. S., Huberman, B. A., and Rumelhart, D. E. Predicting the future: A
connectionist approach. International Journal of Neural Systems, 1(3):193-209,

1990.

[153] Weiss, S. M. and Kulikowski, C. A. Computer Systems That Learn, chapter 2.

Morgan Kaufmann, San Mateo, CA, 1991.

[154] Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the

Behawvioral Sciences. PhD thesis, Harvard University, 1974.

[155] White, H. Learning in artificial neural networks: A statistical perspective. Neural

Computation, 1(4):425-464, 1989. Reprinted in [157].

152

REFERENCES

[156]

[157]

[158]

[159)]

[160]

[161]

[162]

[163]

[164]

White, H. Some asymptotic results for learning in single hidden-layer feedforward
networks. Journal of the American Statistical Association, 84:1003-1013, 1989.

(Correction: 87, 1252.). Reprinted in [157].

White, H. Artificial Neural Networks: Approzimation and Learning Theory.
Blackwell, Oxford, England, 1992.

Whitehouse, D. J. and Huang, T. Adaptive control of electromagnetically levi-
tated spindle using neural networks. EPSRC proposal, Department of Engineer-

ing, University of Warwick, Coventry, England, April 1996.

Widrow, B., Rumelhart, D. E., and Lehr, M. A. Neural networks: Applications
in industry, business and science. Communications of the ACM, 37(3):93-105,

March 1994.

Wnek, J. Hypothesis-driven Constructive Induction. PhD thesis, George Mason
University, March 1993. Also available as technical report MLI 93-2 of Learning
and Inference Laboratory, Centre for Artificial Intelligence, School of Information

Technology and Engineering.

Wnek, J. and Michalski, R. S. Comparing symbolic and subsymbolic learning:
Three studies. In Michalski, R. and Tecuci, G., editors, Machine Learning: A
Multistrategy Approach, volume 4, pages 318-362. Morgan Kaufmann, San Mateo,
CA, 1993.

Wnek, J., Sarma, J., Wahab, A.; and Michalski, R. Comparison learning
paradigms via diagrammatic visulization: A case study in single concept learn-
ing using symbolic, neural net and genetic algorithm methods. Technical report,

Computer Science Department, George Mason University, 1990.
Wolpert, D. H. Stacked generalization. Neural Networks, 5(2):241-259, 1992.

Woodland, P. C. Weight limiting, weight quantisation & generalisation in multi-
layer perceptrons. In Proceedings IEE First International Conference Artificial

Neural Nets, pages 297-300, London, 1989. IEE, London, England.

153

REFERENCES

[165]

[166]

[167)

[168]

[169]

[170]

Wray, J. and Green, G. G. R. Neural networks, approximation theory, and finite

precision computing. Neural Networks, 8(1):31-37, 1995.

Xie, Y. and Jabri, M. A. Training algorithms for limited precision feedforward
neural nets. SEDAL technical report 1991-8-3, Department of Electrical Engi-

neering, University of Sydney, NSW 2006, Australia, 1991.

Xie, Y. and Jabri, M. A. Analysis of the effects of quantization on multilayer neu-
ral networks using a statistical model. IEEE Transactions on Neural Networks,

3(2):334-338, 1992.

Yasunaga, M., Masuda, N., Yagyu, M., Asai, M., Shibata, K., Ooyama, M.,
Yamada, M., Sakaguchi, T., and Hashimoto, M. A self-learning neural network
composed of 1152 digital neurons in wafer scale LSIs. In Proceedings of the

International Joint Conference on Neural Networks, pages 1844-1849, Seattle,
WA, July 1991. TEEE Press, New York, NY.

Yoo, H. and Pimmel, R. L. Weight discretization in back-propagation neural
network classifiers. In Dagli, C. H. et al., editor, Intelligent Engineering Systems
through Artificial Neural Networks, pages 167-172. ASME Press, New York, 1991.

Zhao, Q. and Tadokoro, Y. A simple design of FIR filters with powers-of-two

coefficients. IEEE Transactions on Circuits and Systems, CAS-35:566-570, 1988.

Mathematical Proofs for Chapter 2

This appendix is an expanded version of Section 2.2.2. The added details include
definitions, explanations, intermediate results, and proofs of the theorems and lemmas

of Section 2.2.2

This appendix will follow closely the approach chosen by Stinchcombe and White
[137], in which they enforced some restrictions on activation functions to achieve the
universal approximation property for networks with bounded weights. The results of
this appendix were used in the proof for multiplier-free network existence theorem of
Section 5.2.1.

Consider the approximation of functions f € C(R?) with a 2-layer feedforward
network N'%(o, B), where o is the continuous hidden layer activation function and
B, 0 < B < o0, is the maximum allowed weight magnitude. Let A? be the set of real
affine transforms' on RY, 4:R? — R, ie. A(x) = w-x+ 6, where w € R?, § € R,

and |A| = max{|w;|,|0|}. A d-input feedforward network is defined as

N%o,B) = {f(x) = wio(4;(x)): A; € A and
7=1

Rotations, shifts, and scalings, or any combination thereof, are affine transforms.

154

155 Mathematical Proofs for Chapter 2

max {|wf|, [4;]: 1 <j < q} < B}.

where, ¢ is the number of hidden neurons, x is the d-dimensional input vector, w; is
the input layer synaptic vector for the jth hidden neuron, 6; is the offset and w? € R
the output layer synapse of that hidden neuron. This network is the same as that of
Figure 1.3 except for the restriction on the magnitude of the weights.

A network A is defined to have the universal approximation property over C(R¢)
if A is dense?3 in C(R?). N¢(o, B) is said to be uniformly dense in C(R?) on the
compact set K C RY if for all f € C(R%) and every ¢ > 0 there exists f € N%(o, B) such
that sup{|f(x) — f(x)| : x € K} < e. In this case, N%(o, B) is also uniformly dense in
C(K). N4(o, B) is uniformly dense on compacta in C(R?) if it is uniformly dense
in C(R?) on every compact K. The goal of this appendix is to prove this ‘uniform
denseness on compacta’ property for the CWN with bounded weights.

The following theorem can be used to simplify the investigation into the universal
approximation property. It shows that the existence of a universal approximation proof

in 1-dimension guarantees its extension in d-dimensions.

Theorem A.1 (Theorem 2.1) Let o : R — R be a Borel measurable function and let
0 < B < oo. If NY(o,B) is uniformly dense in C(R) on some non-empty compact
interval [—s,s],s > 0, then for d € N, N'4(o, B) is uniformly dense on compacta in

C(R%). O
The proof of Theorem A.1 requires the following theorem:

Theorem A.2 (Stone-Weierstrass Theorem) Let A be an algebra® of real continuous

unctions on a compact set K. If A separates points® on K and if A vanishes at no
14 D p

2A set A is dense in a set S if A C S and Cl(A) = S.

3For example, rational numbers are dense in irrational numbers. That means between any two
irrational numbers there is a rational one or alternatively any irrational number can be approximated
within any desired tolerance with a rational number.

*A set of functions A is an algebra if f,g € A, 9ER= f+ g€ A, f-g€ A, and 9f € A.

5 A set of functions A separates points on a set S if for every z,y € S,z # y, there exists f € A such
that f(z) # f(y) [136].

156 Mathematical Proofs for Chapter 2

point® of K, then the uniform closure B of A consists of all real continuous functions
on K (i.e. a function in A can approrimate any real continuous function on K to any

desired degree of accuracy) [136]. O

Proof of Theorem A.1 Let K C R? be a compact set and let f(x) = sinz. Let F be
the set of finite linear combinations of elements of {f(A(-)) : f € C(R), A € A%}. F
is an algebra that separates points and contains the constants. The Stone-Weierstrass
theorem implies that F is uniformly dense on compacta in C(R?). Thus it is sufficient
to show that for every A € A%, f(A(-)) can be uniformly approximated on K by
functions in N'%(o, B). Pick N > 0 sufficiently large that A(K) C [~s5- N,s - N]
and |A|/N < B. Note that the range of affine functions A* = A/N is contained
in [—s,s] and that f(A(x)) = f(N - A*(x)). It is possible to pick f € N%o,B)
such that sup{|f(A) — f(N - \)] : A € [=s,5]} < e. This implies immediately that
F(47()) € N¥(o, B) and sup{| f(4*(x)) — F(A()| : x € K} < e. O

The main result of this appendix is that enforcing bounds on the weights does not de-
stroy the universal approximation capability of a network as long as the activation func-
tion is superanalytic at some point with a positive radius of convergence. o € C(R) is
defined to be analytic at a € R with a radius of convergence r > 0 if there is an infinite
sequence of real numbers, {¢,}, n > 0, such that for |z —a| <r, > 07 cn(x —a)" con-
verges and o(z) = > 7 ; ¢p(2 — a)". Furthermore, this analytic function ¢ is defined
to be superanalytic at a with a radius of convergence r if for every n > 1, ¢, # 0. By
the next lemma, this superanalyticity property holds if ¢ is analytic at a with radius r

and ¢, # 0 for infinitely many n.

Lemma A.1 (Lemma 2.1) If o is analytic at a € R with radius v > 0, o()) =
Yoo nA=a)? A —a| < 7, and ¢, # 0 for infinitely many n then for every b in

a dense subset of (a — r,a + 1), o is superanalytic at b with radius of convergence

A set of functions A vanishes at no point of the set S if for each = € S there exists f € A such that
f(z) # 0 [136]. The set of all polynomials in one variable does have this property. The set of all odd

polynomials does not have this property, say on [—1, 1], since f(—z) = —f(z) for every odd function

f [119].

157 Mathematical Proofs for Chapter 2

s=min{b— (a — 1), (a +71) — b}. O

Proof There is no loss of generality in setting a« = 0. Rudin [120] shows that o
can be expanded in a power series about any b in (—r,r). Specifically, for every x €
(b—s,b+5), o(x) =302 ()L™ (b)(x — b)" where 0(")(z) is the nth derivative of
o at z. Rudin [121] shows that o) (2) = 32°° n(n—1)--- (n — k 4+ 1)c 2" F. As o is
analytic at @ with a with radius » > 0 and ¢,, # 0 for infinitely many n, S(k) = {z €
(—=r,r) : 0®)(x) # 0} is an open dense subset of (—7,7). By Baire’s theorem! the

intersection of S(k) is dense in (—r,r) and the result follows. O

Some examples of functions that are superanalytic almost everywhere are sine, cosine,
logistic, and hyperbolic tangent functions. Finite polynomials are examples of functions

which are analytic but not superanalytic.
The statement of the main result:

Theorem A.3 (Theorem 2.2) If for some a € R, o € C(R) is superanalytic at a, with
radius of convergence r > 0, then N(a, B) is uniformly dense on compacta in C(R?)

for any B > max{|al,1}. O

For the proof of this theorem it will be assumed that a = 0. This is done by shifting the
argument of o and abusing notation. Thus, for every —r <z <7, o(x) = o0 j cax®

The proof makes use of the following lemma.

Lemma A.2 If 0 € C(R) is analytic at 0 with a radius of convergence r > 0, o(x) =

Yoty Cax® for x| < 7, then for every k > 0 there is a sequence of functions {fnk €

k

N(o,1)} converging uniformly® to cpa* on compacta. O

"Baire’s theorem states that the intersection of any countable family of open dense sets in a locally
compact space is dense [32]

8Uniform convergence is the property that all of a family of functions or series on a given set converge
at the same rate throughout the set; that is, for every € > 0 there is a single N such that for all points
in the set , | fm(2) — fu(z)| < € for all m,n > N and similarly for uniform convergence as z tends to a

value a [20].

158 Mathematical Proofs for Chapter 2

Proof A double array of functions {fnk € N(o,1) : n > 1,k > 0} is constructed
having the desired properties using functions {h,, € AN'(o,1)} such that {fnk =
nFh i (z/n) and o gy1(2) = hn i (2) = fo k().

First thing to note is that if h, o € N (0,1), then fnk e N(o,1), k> 0,n>1,

k

because n¥h, x(x/n) = Z;Ll hnk(z/n) belongs to N'(o,1) if hy,y does. A general

k uniformly on compacta,

construction will be exhibited here such that fnk — T
and then it will be verified that h, o can be selected to belong to N''(s,1). (In fact,
hno=o0.)

To obtain the desired construction let {qn,a,g :n > 1,a > 0} be a double array such
that 0 < ¢ a0 < 1 for all integers n > 1,0 > 0, and for each o > 0, @00 T1,1.€. ¢y
approaches 1 from bellow, as n — oo. For each k£ > 1 recursively define the double
array {gnao:n > 1,a >k} with ¢n o k+1 = n.ar(1 — n¥/n®), k> 0,a > k+ 1. Note
that 0 < gy ok < 1 for all integers n > 1, > k. Also, for each a > k+1, gy ar T1 as
n — oo.

Because ¢ is analytic at zero with radius r > 0, for x € (—r,7) and n > 1,k > 0,
a function hy, k() can be defined as > o, ¢n.a.kCaz®; the behaviour of h, ; outside of
(—r,7) is of no concern. Putting fnk(x) = n*h, x(z/n), it is clear that fnk is analytic
at 0 with radius (—nr,nr). Further, hy, x11(z) = hy x(2) — fnk(x) holds on (—r,7) by
choice of {¢y o1}, as a direct calculation verifies.

Now for x € (—nr,nr),

oo
R k k—a a
Jnk(®) = Qg pcrx” + E N “na,kCal
a=k+1

o0
_ k —a a+k
= qn k kCLT + E N qn,a+k kCoatkT -

a=1
Given a compact set ' C R, n can be chosen sufficiently large such that K C (—nr, nr).

Therefore, taking suprema over = € I,

[e @]
SUp |gn e — 1 - exl - [2[* +5up D |gnacril - |cag] - 2" - |2/n]".

a=1

Because ¢nrx T 1, |cx| < 00, and x € K, the first term vanishes as n — oc. For

159 Mathematical Proofs for Chapter 2

fnk(x) — cpak uniformly on K, it suffices that the second term vanish also. Now,

00
Z |Qn,a+k,k| ' |Ca+k| : |$|k : |x/n|a =

a=1
[e's)

2 bkl - [Catnl - |2 /n]*
a=1

The analyticity of o implies that > oo by oy®, where by o = [qnatk+1.k| * [Catil,
defines a function analytic at 0 with radius 7. Because |z/n| < r for all z € K and n
sufficiently large, sup,cx S ooy [qn.atk k| [catk] - |/n|*71 < co. As sup,cp |z/fH! <
oo and n~! — 0, the second term vanishes as required, so that fnk(a:) — ¢p2® uniformly
on compacta. Finally, one may choose h,o = o by taking ¢pa0 =1, n > 1,a > 0,

thus ensuring that f, x € N (0, 1). O

Proof of Theorem A.3 This follows immediately from the Stone-Weierstrass theorem
using Lemma A.2 and the observations that A'}(o, B) contains the constants, and that

for every n > 1, ¢, # 0. O

The activation functions are required to be superanalytic so that they can be repre-
sented as an infinite power series containing all powers of . This ‘infinite and complete
polynomial’ nature of these function makes them dense in all continuous functions.

The next theorem allows further restrictions on the weight values without sacrificing
the universal approximation characteristic. The input layer synaptic vectors w; can be
confined to the unit sphere S¢ at the expense of limiting the superanalytic activation
functions to those whose derivatives form a basis for the continuous functions. This is
due to the Stone-Weierstrass theorem which implies that the set of polynomials in o
— which in the present case is formed by the derivatives of ¢ — is uniformly dense in
C(R).

The following theorem uses the term span of a class of functions. For any function
f € C(R) and r > 0, f|(—r,7) denotes the restriction of f to the interval (—r,r), and for
any set of functions F, F|(—r,r) denotes {f|(—r,7): f € F}. For any F defined on a
set O, the span of F, sp(F), denotes the closure of the set of finite linear combinations

of elements of F in the topology of uniform convergence on compact subsets of O.

160 Mathematical Proofs for Chapter 2

Theorem A.4 (Theorem 2.3) If the conditions of Theorem A.3 hold and w; € STU{0}
then N'' (o, B) is uniformly dense on compact subsets of (—r,r) in sp({a®|(=r,r) : k >
0}) for any B > 1 where o'\¥) is the k-th derivative of o. If in addition sp({c™®|(—=r,7) :
k> 0}) = CR)|(=r,7) then for w; € STU {0}, N0, B) is uniformly dense on

compacta in C(R?). O

The proof of this theorem requires some new terminology and a lemma. For every
f € C(R), and hy # 0 define ALY f by (AL £)(2) = hy '(f (& + h1) — f(x)). Suppose
that Agﬁfl)f has been defined for every h* = (hy,...,hp_1) € RF"1\{0}. For h =
(h*. hy,) € R*\{0} define AL £ by (A £)() = (AVAE) ().

k

Lemma A.3 Let 0 € C(R) have infinitely many derivatives on the set (—r,r). For
(k)

every k > 1, there is a sequence h"™ — 0 such that A, o converges to olk

) uniformly

on compact subsets of (—r,r) as n — oo. O

Proof It will be proved through induction. The result is true for £ = 1 because ¢ has
a continuous first derivative, and pointwise convergence® of continuous functions to
a continuous function implies uniform convergence on compacta. Now it will be shown
that the theorem is true for & based on the assumption that it is true for k£ — 1.

Let K be a compact subset of (—7,7) and let ¢ > 0. It will be shown that there

exists an h = (h*, hy), h* € R*¥"1\{0}, hy, # 0 such that
smﬂumrmA$”@@+mg—m$”@un—AW@pxeK}<a
Pick hy such that K C (=7 + |hg|,7 — |hi|) and

&m“mwﬂpWﬂu+hw—Akﬂmn—AW@pxeK}<§
This can be done because K is a compact subset of (—r,r), o has k continuous deriva-

tives, and pointwise convergence of continuous functions to a continuous function im-

plies uniform convergence on compacta. By the induction hypothesis it is possible to

o1t {an} is a sequence of non-random real variables then a, converges to a, i.e., a, — a as n — oo,
if there exists a real number a such that for any € > 0, there exists an integer N, sufficiently large that

|an — a| < € for all n > N, [155]. Also known as deterministic convergence.

161 Mathematical Proofs for Chapter 2

pick h* € RE=1\{0} such that
_ IS
sup {| (A Vo) (@) = o V(@) 0 € [=r + [hul.r = Ihel] | <] - 5

Combining the last two inequalities and applying the triangle inequality completes the

proof. O

Proof of Theorem A.4 The first part of the theorem follows from Lemma A.3 and the

observation that Aglk)f € N''(0, B). The second part follows from Theorem A.1. O

Theorem A.4 states that the superanalyticity requirement for o, although necessary,
is not sufficient for universal approximation if synaptic vectors in the input layer are
restricted to the unit-sphere. Consider the case of sine function, which is superanalytic
everywhere except at 0, but the span of its derivatives is not dense, and therefore
uniform approximation by N'(o, B) with input-layer synapses on the unit-sphere fails.
This can be easily illustrated in the 1-dimension case. Let o(-) = sin(-) and consider
the set

q
Nlsin, 8y =< f: f(z) = Zw;’sin(ix—l-ﬁj), 1<j<n,neN 0;eR
j=1
By the addition formulas for the sine function, any such f must be of the form ¢; sin(z)+
¢y cos(z) for some ¢y, co € R. This set of functions, A (sin, S1), is clearly not dense on
compacta in C(R), being unable, for example, to universally approximate sin(20x) on
[—1,1].

An application of Theorem A.4 provides the following very useful result:

Lemma A.4 (Lemma 2.2) Ifo is the logistic function then for w; € S4U{0}, N'(o, B)

is uniformly dense in compacta in C(R?).

Proof For this it is sufficient to show that sp({o®)|(—=r,7) : k > 0}) = C(R)|(=7,7). By
the Stone-Weierstrass theorem it is known that for any continuous and strictly mono-
tonic ¢ the set of polynomials in o, {Zk ot 0 <k <j<n,né€E N} is uniformly
2

dense in compacta in C(R). Direct calculation shows that o) =¢-(1—0) =0 —0

and that the derivative of % is k-o*~!1.0-(1 —¢) = k- (6% — o). This implies

162 Mathematical Proofs for Chapter 2

that the set of finite linear combinations of the derivative of ¢ is exactly the set of

polynomials in o. [

A similar application of Theorem A.4 was used in Chapter 5 to prove the universal

approximation property of the multiplier-free net.

Training Procedure and Parameters

This appendix contains the details of the integer-weight learning procedure which was
first presented in Table 3.3. It also displays the parameters values for all of the training

runs whose results have been used in this thesis.

163

164 Training Procedure and Parameters

Table B.1 Abbreviations and symbols used in this appendix only'

C Continuous weight net

E Error controlling the values of y and p. It can either
be E, . or E,

I Integer weight net

M Multiplier-free net

N Network type

En Neuron error margin (Error in the output of a

neuron is not backpropagated if it is within this
margin [139])

ks, BP learning rate boost factor (The learning rate is
boosted by this factor for one epoch if £, =0
and FE, > ¢

ko o'(+) offset (Constant added to the derivative of the
activation function if the error in the output of a
neuron is large [35])

A Weight decay coefficient

- Numerous values (Consult main text for the reason)

!See Page xi for the definitions of all other abbreviations and symbols.

165 Training Procedure and Parameters

Table B.2 Integer-weight learning?

procedure IntegerWeightLearning
repeat
initialise weights with values selected randomly
from a uniform distribution on the interval (—0.5,0.5);
repeat
Y axe(S*Eo)ﬂx;
p ape(S*Eo)ﬂp;
shuffle training examples
repeat
choose next training pair (x,t); let the 0" layer be ug = x;
ForwardPass;
ComputeGradients;
UpdateWeights;
until all training examples have been used
if £, =0 and E, > ¢ then
boost 7 by a factor of k,, for the next epoch only;
increment epochs;
until (E, < e and E,, = 0) or (epochs modulo Cr = 0);
until epochs modulo Cr # 0

end; {IntegerWeightLearning}

subroutine ForwardPass
for layer =1 to L do

for neuron = 1 to Nigye, do

Niayer—1
Ulayer,neuron — tanh(i:((l)ym wlayer,nEUTon,iulayer—l,i) ;
enddo
enddo

end; {ForwardPass}

*Notation and style adapted from [65]. (Continued on next page)

166 Training Procedure and Parameters

Table B.2 (continued)

subroutine ComputeGradients
for layer = L to 1 do
for neuron =1 to Niyye, do
if layer = L then

{

€L neurone < UL neuron — theuron:

if €L neurone < €n then €L neurone < 0;

}

else

€layer,neuron <~
Zyaniyl”+1 elayer+1,j(1 - u?ayer+1’m)wlayer+1,m,neuron;
enddo
for all weights in layer layer do
if €layer,j < 0.75 then
layer,j,i < elayer,j(l - u?ayer’j)ulayerfl,i;
else
layer,j,i < elaye?‘,j(l - ul2ayer,j + ka’)ulayerfl,i;
enddo
enddo

end; {ComputeGradients}

subroutine UpdateWeights
for all weights w; ;; do
Wi Wigi — NGLgi + 190ji, — MWL
wy i < Wi — X - (Wi — Qprac(wy ;i) tan(RND);
wy i < Blwyjq);
enddo

end; {UpdateWeights}

167 Training Procedure and Parameters

Table B.3 Training parameters for Chapter 3

Experiment N Confg 7 po AN ke o a, E k; € e Cgp Cr
Table 3.5 XOR C 2:221 01 08 004 0 0 E,, 10 04 0.4 500 -
I 2221 01 099 0 04 102 0.1 E,, 10 0.4 0.4 500 -

E/D4 C 4214 005 09 004 0 0 E,, 10 04 0.4 500 -

I 424 01 099 0 04 102 0.1 E,, 10 0.4 0.4 500 -

E/D8 C 8:3:8 0.0075 09 004 0 0 E,, 10 0.4 0.4 500 -

I 83:8 0.0075 099 0 0.4 1072 0.1 E,_ 10 0.4 0.4 500 -

Table B.4 Training parameters for Chapter 4 and Appendix C

Experiment N Confg 7 I A ke ay o, E k; € e Cgp Cp

Figure 43 T 2:3:1 - 099 0 04 10°% 01 E,, 10 - - 500 -
I 2:4:1 - 099 0 04107%01£E, 10 - - 500 -
Figure C.1 C 21 0.05 099 10204 0 0 E, 0 0.4 04 500 -
I 221 005 099 0 04 1072 01 E,, 10 0.4 0.4 500 -
Figure C2 C 21 0.05 099 10204 0 0 E, 0 0.4 04 500 -
I 221 005 099 0 04 1072 01 E,, 10 0.4 0.4 500 -
Figure C.3 C 2:2:1 0.01 099 10° 04 0 0 E, 0 0.4 04 500 -
I 2221 001 099 0 04 103 0.1 E, 10 0.4 0.4 500 -
Figure C.4 C 2:2:1 0.01 099 10° 04 0 0 E, 0 0.4 04 500 -
I 2221 001 099 0 04 103 0.1 E, 10 0.4 0.4 500 -
Figure C.5 C 2:3:1 0.01 099 10304 0 0 E, 0 0.4 04 500 -
I 2:3:1 001 099 0 04 1072 0.1 E,, 10 0.4 0.4 500 -
Figure C.6 C 2:3:1 0.01 099 10° 04 0 0 E, 0 0.4 04 500 -
I 2:3:1 001 099 0 04 1072 0.1 E,, 10 0.4 0.4 500 -
Figure 4.7 C 2:4:1 001 099 107 04 0 0 E, 0 0.4 0.4 1500 -
I 2:4:1 001 099 0 04 1073 0.1 E, 10 0.4 0.4 1500 -

o
3

(Continued on next page)

168 Training Procedure and Parameters

Table B.4 (continued)

Experiment N Confg 7 I A ke ay a en Cr Cr

e

o
]

)

Figure 48 C 2:4:1 0.01 0.99 1073 0.4 0 0 0 0.4 04 1500 -

S
3

I 2:4:1 0.009 099 0 0.4 1073 0.1 10 0.4 0.4 1500 -

S
3

Figure C.7 C 2:4:1 001 0.99 1072 04 0 0 0 0.4 04 3000 -

o
3

I 2:4:1 0.005 099 0 04 1073 0.1 10 0.4 0.4 3000 -

o
3

Figure C.8 C 2:4:1 0.01 0.99 1073 0.4 0 0 0 0.4 04 3000 -

S
3

I 2:5:1 0.005 099 0 04 1073 0.1 10 0.4 0.4 3000 -

S
3

Figure C.9 C 214 0.01 099 1073 04 0 0

[s)
o

0.4 04 500 -

3

I 251 001 099 0 04 1073 0.1 10 0.4 04 500 -

S
3

Figure C.10 C 714 0.01 0.99 1073 04 0 0 0.4 0.4 500 -

Q
S

3

I ZI4 001 099 0 04 1073 0.1 10 0.4 04 500 -

o
3

Figure C.11 C 211 0.01 099 1073 04 0 0 0 04 04 500 -

o
3

I 251 001 099 0 04 1073 0.1 10 0.4 04 500 -

o
3

Figure C.12 C 214 0.01 099 1073 04 0 0 0 04 04 500 -

S
3

I 251 001 099 0 04 1073 0.1 10 0.4 04 500 -

S
3

Figure 49 C 724 0.011 0.99 10=3 0.4 0 0 0 04 04 1500 -

o
3

I 221 0011 099 0 04 1073 0.1 10 0.4 0.4 1500 -

S
3

Figure 410 C 221 0.01 099 1073 04 0 0

Q
S

0.4 0.4 1500 -

3

T 231 0.0075 0.99 0 0.4 1073 0.1 10 0.4 0.4 1500 -

o
3

Figure C.13 C 221 0.01 099 1073 04 0 0 0 0.4 04 3000 -

S
3

1 241 0.009 099 0 04 1073 0.1 10 0.4 0.4 3000 -

S
3

Figure C.14 C 221 0.01 099 1073 04 0 0 0 0.4 04 3000 -

o
3

I 251 001 099 0 04 1073 0.1 10 0.4 0.4 3000 -

S
3

Table 4.2 and1 ZIT:A 0.01 0.99 0 0 1072 0.1 5 0.4 0.4 1000 -

o
3

I e N e I e T e T < B I S I «S I I S TR S B IS B B S I s I I e T« I I e S H < I e T c I I c I «S I I e S B <

o
3

Figure 4.6 I 224 001 099 0 0 1072 0.1 5 0.4 0.4 1000 -

169 Training Procedure and Parameters

Table B.5 Training parameters for Chapter 5

Experiment Confg 17 w ANk o« o E k, € ¢ Cr Cr

Table 5.1 XOR 2:3:1 0.005 0.99 0 0.4 10~® 0.1 E, 10 0.4 0.4 100 -
E/D4 4:2:4 0.008 099 0 0.4 10=® 0.1 E, 10 0.4 0.4 200 -
E/DS 8:3:8 0.011 099 0 0.4 10~® 0.1 E, 10 0.4 0.4 200 -

Table B.6 Training parameters for Chapter 6

Experiment N Confg 7 I Aky ay ap E ky € €& Cgr Cr

Table 6.2 #1 I 17:4:1 005 0.15 0 0 107201 E,, 10 0.4 0.4 200 171

M 17:3:1 001 09 0 041020.1FE 9.9 0.1 0.4 200 44

Orms

#2 1 17:4%1 0.1 0075 0 0 107201 E,, 10 0.4 0.4 200 52

M 17:3%1 001 09 0 041020.1FE 9.9 0.1 0.4 200 22

Orms

#3 1 171 01 005 0 0410730.1F 10 0.48 0.75 200 26

Orms

M 17:7%1 001 09 0 041020.1FE 10 0.4 0.4 200 11

Orms

Table 6.4 C &2:1 0.005 0.8 100 0 0 F 0 0 0 50 590

Orms

I 812%1 0005 0.8 0 0 10°%0.1FE 10 0.75 0.4 50 &4

Orms

M 8:10%:1 0.005 0.8 0 0 10°0.1F 10 0.75 0.4 50 183

Orms

Table 6.5 C 32:7:10 005 05 100*0 0 0 E 0 04 04 200 112

Orms

I 32:10:10 0.025 0.8 0 0 10%0.1FE 1.50.05 0.4 200 3960

Orms

M 32:11:10 0.0105 0.9 0 0.41030.1 E, _ 1.50.05 0.4 200 3500

*The number of hidden neurons is the one used at the start of simulations. Some of the hidden

neurons were killed off during learning and the number of effective neurons is shown in the relevant

table in the main text.

Decision Surfaces of Chapter 4

This appendix displays the decision surfaces mentioned but not shown in Chapter 4.

170

171 Decision Surfaces of Chapter 4

AP IIETT

W

e
22

I,
T e

Input#2

&
Z
P
§R5oettr 7
LR
e

-1

P 7
o
s

&
&5Z
L

&5 &£
& &
e AL
O 7777 LR TT
R s
e LIAlZ

SR LT
G A ILLTT
S
A IITS
<5 2z =
Vo o e S o v a4
G (BRI TIT LTS
e VO v e
e s o e A Vo S s e
B I e eSse 75

P
.
~—

o Z & I IIIL
(FFrrT 2z s 7 I T
o i
W P e
e s SRR I ITITS
i 77 % S
Z 2T
S
&z
Lz

~~
=
~

T ILIE
i AT
AL e
= e sy
AT T
LR LEELILE
AR T ~ 2
Z Z
22T
2R
22547 L

Q)

Figure C.1 Decision surfaces after 6 consecutive training runs on problem A: 2:1 network

with double-precision weights (a-f); 2:1 network with integer weights (g-1).

4
‘hapter
ision Surfaces of C.

Decisi

172

1

Input#2

|
-

L
B e LS
eI

RIS
= S
ST L
-'::"-;'.":.'-

e Z7

L
2%

T
.........._.-.-......:
~""~'~'.~.~..,.,.;-,.....:::
.:....._’7'...
% "~'-'.~.-,-_....
= 2%
= = .~.~
s = ..:.:.::::
S 2
..',%
== ,...'.:,:....:.
“::‘-"-'4%:.:.?

7
AL
7 ==
S e
S Z
KL
2 Z rav,
LA
S .
== L
LI

~
=T
s
e

o
e

SR

e

& """:';"f‘.-

S

G T
2

2275
T
GRRERr T T TS
oS ZZ5
27552

te
g

-1).
ights (g

ith integer wei

rk with in

hts (a-f); 2:1 netwo

ights

ision weig

i ble-precisi

with dou

173

Decision Surfaces of Chapter 4

-,
5 Ll
2% S

ol

X
F2 /¥
2 S
XL h‘é'...
2L

Q0!
CRX
2
S
SRR
R
s

&
25

e
s
2L
s
N T
74} 7 LIRS
7 LELLL
771! Z

LAZ
LRLRE
LIERLA TR
Re

AT I LI
SREZAZLILZLETR
SRR

q"q'q'vv"'v""" Sk

S

S

LA EEFEZZATH
LR LLEL

\
N
\¢

L
5L
L5
LR <
SRRER
LLRLZA X%

&
27
e .
e T A
S

£222 7 17 &%
(PRI] 1777 P
szl S
R I R
L L
77

Figure C.3 Decision surfaces after 6 consecutive training runs on problem B: 2:1 network

with double-precision weights (a-f); 2:1 network with integer weights (g-1).

174 Decision Surfaces of Chapter 4

—1 Input#l1 1

X YISO
RN

SRR

S

|
-

S
T
P
LRI

72\
SN
N

2 %
Y/ 772 X2z
1/ e e S S S
X LLILI IS 'jl) //”;'::“\‘:.:::
AR 2/ ” S\ v
LA AT LIAFAS &
LR / SO

Sz
Cae:
T

'.'l.. LY
IS0 LR
22030 0 0 S0 S, AT
LA TATATIS R e N N ¥ e
SRRRALLLS S S
B AR SSSSSSsIEEwE

Vo7, - N
AR TR
Y st SN\

7 LRI
RN G e e iy
s s o e e S SN\ o e e

SR SRR ITAS
77 LAY XXl 7L T AT AT
% L '»'::::

2\
2\
77772500
/730
,.;,/// s NN " "
£
NN & DN
F2 AN\ e
£ RN e L,
S RN LTI,
R RN RN SIS
27 A - R e

SRR SRR
B s e e
(BT LT
LR LT

(f)

Figure C.4 Decision surfaces after 6 consecutive training runs on problem B*: 2:2:1

network with double-precision weights (a-f); 2:2:1 network with integer weights (g-1).

Decision Surfaces of Chapter 4

175

—1
—1

oo
e
) 27171 ’
yr”o, sy
el
] |
LT 1T]
S
LR
) %

2

S

/7222 22
/7 72L %

P SO
=)

=

S S

e
s

";:.:.i R %
il

<A\
BaSN
isdses=
(L7
DR
O
inste? e N
7, 7 N
& ERY

2
22 17
(17255 ” 11
e T I
A LY
'lll l” "’.".'::t\\r'::'

,,:.'. TTIITT
LR 77
’ PR 11 17
v, L2755 5L AL
) 1[,1,','.'.?::;...“\,, R
"'llll’ = ZA

Figure C.5 Decision surfaces after 6 consecutive training runs on problem C: 2:3:1 network

with double-precision weights (a-f); 2:3:1 network with integer weights (g-1).

Decision Surfaces of Chapter 4

176

—1 Input#l1 1

G ,’7:;"":5‘ Vi
2\ I\
ooy 7N H Nres
SR S
L % 52""’1/////’[”".'2“:\':':’/
'.:".:':':’llll Ve,

A
LA
GEREL TR

2 X N
SN ARz
2 AA e

B\
""":"":":::i:.\ﬂ .'ii:::;':i
i i
RN]
TN
NN
"‘s\\\\.\"'
N
\Q..
N\
\~

G

"";'l';'."";;;';‘ e,
TR
B

N
]
““’"ﬁ’(’{#.’!""n’,"
i
Ny

PSS 1
SRR]
LR LR
A\
O **\\\‘

A
TN

SR\
e

L

[
<2
22

LN

S s
LR RN

s D I R

Figure C.6 Decision surfaces after 6 consecutive training runs on problem C*: 2:3:1

network with double-precision weights (a-f); 2:3:1 network with integer weights (g-1).

177 Decision Surfaces of Chapter 4

Input#2

|
-

L2
,'.'-,‘zz‘;;::""v \
. ",'\‘&@é&é.’ﬂ-’

h,./
0y .~'.~,////
S

RN
NN
2
N\
ZA L
)

S .':' :"."
i

ST
S e
L

(:.:i:i.., R
iy

LY
222K\

Figure C.7 Decision surfaces after 6 consecutive training runs on problem E: 2:4:1 network

with double-precision weights (a-f); 2:4:1 network with integer weights (g-1).

178

Decision Surfaces of Chapter 4

,/ ‘\)‘).;:.-:«A\\ ’ﬂ 7

..-~.~.,

n.m"'

‘...-

-::.'~."-
Vivees ’

L
o
~.-

.

i"."" Rz

Q
’..5.-~
-‘4...:.~ .~~QQ

L B
m R

il

0. ., .‘:.'~:
252 ’
e s

.~
il
'“ lll’!.':“l’

.

W

b O
57 | &:«:.«.
N
207 .'//
Ve

QMR ey
&5 2’4‘:5':':"’." ey
R "”&’”

5
N

X
-

i
8
RLLL
W

Figure C.8 Decision surfaces after 6 consecutive training runs on problem E*: 2:4:1

network with double-precision weights (a-f); 2:5:1 network with integer weights (g-1).

179 Decision Surfaces of Chapter 4

/)
Yod)
&2

LY >,
QR 22
R Vo)
CRRRRZIET 77 RAZZEL
S S
7))
"'l/

LR
QR

/4
/4
(1777 AELTTLRS
2R
RN
s SN\
AN

X
LR
LR &
QRLLAE LR
RXKXRIZLLL QR 2R
0K LRRLEZ
LRSS

) s
e,
Vs
N7 7R
7772
/;/,/,".':..:geéé
7

4
)
Y

L
DAL
LR

Q5 G
A SR AL LG BT AT
LRI i e e
2

L
RRLELTLLLL
S
L ETILL
7

Figure C.9 Decision surfaces after 6 consecutive training runs on problem B: 211 network

with double-precision weights (a-f); 211 network with integer weights (g-1).

180

Decision Surfaces of Chapter 4

|
-

DDA

==

2 SOREES
L L

y
4
G =

L7

&L
&)
L)

25

[FILTZ

RN

HTZRER
2%

Vs
Vi
oo 2 i
775
S

7777

R s
evess

W\
W

N

AN

N

\\\\'Q“
N

7 \
L
AZZIERN
7 2R

LT

N

R
N

N
A
N
S
NN
NN

AN
N\

NN

NN

12
777 7HFX
Zaressst

N

AN

7N
72N
27N
7 s
Y
RN
e\ N
Y rrie\ Nt
A RN
S 7 N
A e\ Sl
SN
e

22X
L e
ERESESIENS
R

N,
N
\
N
N
N
i
)
i
'l

N\
NN
N

T
AN
N i'
L
,

\.\
NN
N
3
,

N

AN
W

R
W

N

N
N
N
oy
o,
2

W\

{
Sl
iy

!

N
\
i
4

N
W

N
INNANNN!
R
q

o

&

W
N

N
N

W
N
N
N

N
2

N

77
277

N
AN
SN

A

N

N

e
'ii""'"i "i """'"

N
".l.'.', h,'

U

Q
X
K
i
i
",:,,l
/

Q0
(.

N
o
o
0
by
t,’:'
%

\
S
S
,
QO
0l
K0
000
5%

%

=
\\‘ E‘ig X
%
40
%

Figure C.10 Decision surfaces after 6 consecutive training runs on problem B*: 211

network with double-precision weights (a-f); 211 network with integer weights (g-1).

181 Decision Surfaces of Chapter 4

2 EEE LT
Vi ARG
7 N
e i 11 .. .’ 0 0 '.

i e, QOO0
ln'l'l'l"""""f':':::::Z::f..‘\.l é:é:fbﬂ.ﬂnggg

ARRCECRRREN)

52>

DL

=

7

R]
KN N" i!"

R

QLALRL TR
LR
RELELLR
B

o

§
)

LT

RN
il

i~'~'q’,"q’ﬁ'i¢’"qt
SR

%
v
7 77T
LRI T
I L Rt
&
&

oz
NI T T
,",',"":.:'.’i.;z!;'.',',l,uulllll""

(\ i

Figure C.11 Decision surfaces after 6 consecutive training runs on problem C: 211

network with double-precision weights (a-f); 211 network with integer weights (g-1).

182 Decision Surfaces of Chapter 4

R

SEEEZ

X

N \\\\\‘ LT 22\

) SRR TS [N T

S WSS 22N 7777
SERRILIZIZL NN T

ANERZR LR ELLIRS 7RG H

— S "’*&QW & RG]
&) ’s‘\%‘ Z R

|
-

A2\
2\ T
177758

Y 77
o 7
V e ’I”’I’
Lz T
e e
/’/l,",":i:'}\‘;#:'i':':’///[”

\ i /2 -
2 T V I
N AT V e/
Vi Y e
i e
7 i, Y e i
e s eat] NI
IR Y s i
e L] &Y R
'

777

R
X
QR
Q‘ 2 VN T
O P e N S
R ZZLLIX, N
SN s
XREEL IR LN R
&) ws‘& N

4

J7 7

2N 77 72N HZZE

T\ HIHH 17N IS

N TN
NN] LI rraesssaaatgl,
& P S IR]
& 2277 % 125
&Y

Figure C.12 Decision surfaces after 6 consecutive training runs on problem C*: 2:1:

network with double-precision weights (a-f); 211 network with integer weights (g-1).

183

Decision Surfaces of Chapter 4

|
-

A
LR [
AN A
AN 2\
NN AN
NS
IR 25

5

N2

R

NS o
27

2L
b‘\\~~'
IR

Rz
L
SE

S

1

v

iﬁ?gi#':' .T"". V"' Y&

.s\\\“:f.',’,’:"':"'::::.
)) N SRR
ey PN\
t',"q't'.'"n'"c'"v'iv'ififid' NN
[Y NN DN 1 ,,.\\\\\\\w..,,nn.g\\\u
B N
17 N
T p\seiming
'0.'0.'..'..'..'.,7// \S
A
(i
T I 11111757 17
L .'.,'.,'.:.:~. 25 Y rasS S FHHHTTZR
7 SRR]
R]
L 2L

==
——

)

22\ G
;,’,'.::‘\:\\\\ ;////Z,' 2,
2\ \ 22, L
VN Za

W22

e
222N
4

e

2

&7/
S5
777

N
et
)

SN .

&= !~!'.'l.
S
....4;::.;;.:.;;.;.:;:: AR r,,.“ N
o SN

S e
{7 .'.".q"..'....

{

9

{

Figure C.13 Decision surfaces after 6 consecutive training runs on problem E: 2:2:1 net-

work with double-precision weights (a-f); 2:4:1 network with integer weights (g-1).

184 Decision Surfaces of Chapter 4

S
’: t;!;!}:?i":‘i‘# KK
""""""”Q’Q’Q‘Q ‘

AY

Af <
o
"l!'.!;'l'ﬁ!‘,

“6 o

7 ZERT ""'qqq' 257

2L

o
Plamzer
e

i
/ W

&

7
{Z
"'

M’l@:‘w\
"z";"c‘."q"'q"" S8 !
R

2R

S
7 .,
SN &
SN

K

Figure C.14 Decision surfaces after 6 consecutive training runs on problem E*: 221

network with double-precision weights (a-f); 2:5:1 network with integer weights (g-1).

Publications from This Thesis

This appendix includes the two papers which have been published as a result of the
author’s work on this thesis. The material presented in these papers is a condensed
version of Chapters 3 and 4. The first paper also includes Chapter 6’s IWN results on
the MONK’s benchmark.

A. H. Khan and E. L. Hines. Integer-weight neural nets. Electronics Letters, 30(15):

1237-1238, July 1994.

A. H. Khan and R. G. Wilson. Integer-weight approximation of continuous-weight
multilayer feedforward nets. Proceedings of the IEEE International Conference on
Neural Networks, volume 1, pages 392-397, Washington, DC, June 1996. IEEE Press,

New York, NY.

The following review also appeared during the author’s work on this thesis.

A. H. Khan. Book Review: Fausett, L., Fundamentals of Neural Networks, (Prentice-

Hall, 1994) in The Computer Journal, 37(5):472, 1994.

185

186 Publications from This Thesis

Integer-Weight Neural Nets

Altaf H. Khan
Dept. of Engineering, Univ. of Warwick, Coventry, CV4 7AL, England
Dept. of Electrical Engineering, Univ. of Engineering & Technology, Lahore, Pakistan

Evor L. Hines
Dept. of Engineering
Univ. of Warwick, Coventry, CV4 7TAL, England

ABSTRACT

Integer-weight neural nets (IWNN) are better suited for hardware implemen-
tation as compared with their real-weight analogues. We present a learning
procedure for generating multilayer IWNNs having all weights in the set {-3,
-2,-1,0, 1, 2, 3}. The performance of this procedure was evaluated on XOR,
encoder/decoder, and the MONK’s benchmark. The IWNNs were found to
be as capable as their real-weight counterparts regarding generalisation per-
formance.

1. Introduction

Neural nets (NN) having integer weights and offsets are easier to implement in elec-
tronics as well as in optics. Integer weights in the range [-3, 3] can be represented by
just 3 binary bits. This property reduces the amount of memory required for weight
storage in electronic implementations. Moreover, in the special case of IWNNs with
binary inputs, neurones in the first hidden layer have a very limited number of possible
output states. Therefore, a neurone in that layer requires only an integer multiplier
and adder, and a short look-up table for the transfer function, resulting in a simple
electronic implementation. In optically implemented NNs, where weight values are
represented as grey-scale masks or voltage levels for spatial light modulator, the com-
plexity of implementation is again reduced because of integer weights. In this letter, a
learning procedure for constructing multilayer IWNNs is discussed. Simulation results
on the XOR, encoder/decoder, and MONK’s benchmark are presented to illustrate its
validity.

A multiple-thresholding method has been proposed for generating discrete-weight
NNs [1], [2]. In this simple method, the continuous weights of a fully trained NN are
quantised using a multiple-threshold non-linear function. This technique was used for
training with ternary weights [1] and it was found that a large percentage of the result-
ing NNs failed to perform correctly when the weights were quantised. An alternative
technique is a modification of the standard error Back-Propagation (BP) algorithm [3].
In this modified version, weight updates occur only if the required modification is large
enough to move a weight from one discrete level to another [4], [5]. The Continues-
Discrete Learning Method [5] follows a more fruitful strategy. In this method, a trained
continuous-weight network is quantised, and then trained again. This cycle is repeated
until the network converges. In addition, Marchesi et al. [6] have proposed a learning
algorithm to generate NNs with powers-of-two or sum of powers-of-two weights and
unrestricted offsets. This method simplifies the multiplication operation for neurones.

187 Publications from This Thesis

2. Integer-Weight Learning

The NN is initialised with small random weights and the learning process is started with
little attention to weight quantisation. The quantisation mechanism slowly comes into
play as the NN starts moving towards convergence, and becomes stronger as learning
progresses. The on-line BP with momentum algorithm is used for the minimisation of
the output error. The weight quantisation part of the training procedure consists of
two mechanisms. The first mechanism determines the integer that a given weight is
closest to. It then minimises the quantisation error of the weight with respect to that
integer in the mean-squared sense. The change in weight is given by:

Aw = X(q - ’U)),

where
g = integer closest to w, ¢ € {—3,—2,—1,0,1,2,3},
x = rate of weight quantisation.

The second mechanism acts as a black-hole centred at an integer. If a weight
falls within the black-hole radius, it’s value is forced to the centre-value of the black-
hole. The weight quantisation rate and the black-hole radius are computed before each
learning epoch, and are exponentially dependent upon the error of the output neurone
with the maximum error (E,,)

3. Local Minima

The standard BP algorithm sometimes gets stuck in local minima [3]. The superposition
of the weight quantisation process on BP results in even more local minima. At the
start of integer-weight learning, F,, is large, and the output error minimisation process
dominates. Conversely, the weight quantisation process has the upper hand when E,,
is small. At intermediate values of E,,, the two processes may nullify each other’s effect
- resulting in a local minimum. To avoid local minima, the weight quantisation process
is augmented by a perturbation process:

Aw = x(q¢ —w)tan(RND),

where
RND is a random number selected uniformly from (0,7/2).

This perturbation strategy was very successful, except in cases where an IWNN was
generated with an unacceptably large E,,. The solution we adapted in these cases was
to strengthen the error minimisation process. This was accomplished by temporarily
boosting the BP learning rate. A boost-up factor of 20 for one learning epoch worked
quite well in our simulations.

4. Simulation Results

Fully connected feedforward NNs with hyperbolic tangent non-linearities in the hidden
and output neurones were used for all simulations. The training data was scaled to
the range [-1, 1]. Training was stopped when FE,, was less than a prespecified value,
€, and all the weights had integer values. The weight quantisation rate and the black-
hole radius of the form ae(“=Fm)8 was used. The values of « and 3 were empirically
determined and were found to be problem insensitive.

188 Publications from This Thesis

Table 1 Weight quantisation parameters

Parameter « 15}
Weight quantisation rate, y 0.001 16
Black-hole radius 0.1 6

Table 2 Learning epochs
Problem Min. Max. Avg. Median
XOR 15 69 31 27
Enc/Dec-4 10 42 22 21
Enc/Dec-8 129 1420 529 383

Table 3 Comparison of generalisation performance on the MONK's problem®

Problem BP BP with Cascade Alopex Integer-weight
weight decay correlation
#1 100% 100% 100% 100% 100%
#2 100% 100% 100% 100% 100%
#3 93.1% 97.2% 97.2% 100% 100%

“The BP, BP with weight decay, and cascade correlation results are from [7], and the

Alopex results are from [8].

The functionality of integer-weight learning was tested by performing 25 simulations
each on the 2-2-1 XOR, 4-2-4 encoder/decoder, and 8-3-8 encoder/decoder problems,
with € = 0.4. The generalisation performance was evaluated on the MONK’s benchmark
which consists of three binary classification problems [7]. Problem #1 is in standard
Disjunctive Normal Form (DNF), whereas problem #2 is similar to the parity problem.
Problem #3 is also DNF but with 5% deliberate misclassifications in the training data
set. IWNNs with various architectures were trained and best results were achieved with
17-4-1, 17-4-1, and 17-1 configurations, respectively. Perfect generalisation was attained
in 171, 52, and 26 epochs, respectively. Due to the presence of misclassifications in the
training data set, £, was replaced by RMS error in the simulations for problem #3. A
comparison of the generalisation performance of this integer-weight learning procedure
and other real-weight learning algorithms on the MONK’s problems is presented in
Table 3. It is clear from Table 3 that integer-weight learning generates NNs which are
at least as capable as the best generated by real-weight learning algorithms.

5. Conclusions

An effective procedure for constructing IWNNs has been presented in this letter. The
NNs generated by this procedure may have additional performance related benefits
besides the hardware implementation advantage. For example, this learning procedure
produces IWNNs with some weights having a value of zero !. Moreover, the number
of zero-weights is higher if larger-than-optimal NNs are used for training. The reduced

'The TWNNs trained on the MONK’s problem #1, #2, and #3 had 61%, 51%, and 67% zero-value

weights, respectively.

189 Publications from This Thesis

number of effective weights combined with the fact that the weights are restricted
to seven values, limits the complexity of the network. This should result in reduced
over-fitting and improved generalisation performance [8].

Acknowledgement: One of the authors (AHK) is supported by a scholarship from
the Commonwealth Scholarship Commission in the UK. Initial part of this work was
supported by a grant from the Directorate of Research, UET, Lahore, Pakistan.

References

[1] Chieueh, T. D., and Goodman, R. M.: ‘Learning algorithms for neural networks
with ternary weights,” presented at the First Annual Meeting of INNS, Boston, MA,
September 1988, abstract: Neural Networks, 1988, 1, p. 166

[2] Woodland, P. C.: ‘Weight limiting, weight quantisation & generalisation in multi-
layer perceptrons,” Proc. IEE First Int. Conf. Artificial Neural Nets, London,
1989, pp. 297-300

[3] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: ‘Learning internal represen-
tation by error backpropagation,” in Parallel Distributed Processing: FExplorations
wn the Microstructure of Cognition, 1, Rumelhart, D. E., and McClelland, J. L. Eds.
(Cambridge MA: MIT Press, 1986), pp. 318-362

[4] Von Lehmen, A., Paek, E. G., Liao, P. F., Marrakchi, A., and Patel, J. S.: ‘Factors
influencing learning by backpropagation,” in Proc. IJCN, July 1988, pp. 1-335-1-341

[5] Fiesler, E., Choudry, A., and Caulfield, H. J.: ‘A weight discretization paradigm
for optical neural networks,” in Proc. Int. Cong. Opt. Sci. €& Engg., 1990, SPIE-
1281, pp. 164-173

[6] Marchesi, M., Benvenuto, N., Orlandi, G., Piazza, F., and Uncini, A.: ‘Design of
multi-layer neural networks with power-of-two weights,” IEEFE ISCS, New Orleans:
1-3 May 1990, 4, pp. 2951-2954

[7] Thurn, S. B., Bala, J., Bloedorn, E., Bratko, 1., Cestnik, B., Cheng, J., De Jong,
K., Dzeroski, S., Fahlman, S. E., Fisher, D., Hamann, R., Kaufman, K., Keller, S.,
Kononenko, 1., Kreuziger, J., Michalski, R. S., Mitchell, T., Pachowicz, P., Reich, Y.,
Vafaie, H., Van de Welde, W., Wenzel, W., Wnek, J., and Zhang, J.: ‘The MONK’s
problems: A performance comparison of different learning algorithms’, Carnegie
Mellon University, CMU-CS-91-197, December 1991. The training and test data
sets for the MONK’s problems are available at the ftp site ics.uci.edu

[8] Hush, D. R., and Horne, B. G.: ‘Progress in supervised neural networks: What’s
new since Lippmann,” IEEFE Signal Processing Mag., 1993, 10, pp. 8-39

[9] Unnikrishnan, K. P., and Venugopal, K. P.: ‘Alopex: A correlation-based learning
algorithm for feedforward and recurrent neural networks’, Neural Computation,
1994, 6, pp. 469-490

190 Publications from This Thesis

Integer-Weight Approximation of Continuous-Weight
Multilayer Feedforward Nets

Altaf H. Khan Roland G. Wilson
Department of Engineering Department of Computer Science
University of Warwick, Coventry, CV4 7AL, England

a.h.khanQieee.org roland.wilson@dcs.warwick.ac.uk

ABSTRACT

Multilayer feedforward neural nets with integer weights can be used to ap-
proximate the response of their counterparts with continuous-weights. Inte-
ger weights, when restricted to a maximum magnitude of 3, require just 3
binary bits for storage, and therefore are very attractive for hardware imple-
mentation of neural nets. However, these integer-weight nets have a weaker
learning capability and lack the affine group invariance of continuous-weight
nets. These weaknesses, although compensatable by the addition of hid-
den neurons, can be used to one’s benefit for closely matching the network
complexity with that of the learning task. This paper discusses theses is-
sues with the help of the decision and error surfaces of 2-D classification
problems of various complexities, whose results suggest that in many cases,
limited weight resolution can be offset by an increase in the size of the hidden
layer in the network.

1. Integer-weight Nets

The response of a feedforward multilayer neural net having continuous weights (CWN)
can be approximated with one having discrete weights in one of two ways [1] — by
either allowing the number of discrete levels to grow [2, 4], or increasing the number of
hidden neurons. This paper, while discussing both, will emphasise the latter of the two
approaches, and will mainly be concerned with weights having small integer values.
The results suggest that in many cases, finite weight resolution can be offset by an
increased number of hidden neurons.

Integer weights in the range [-3, 3] require just 3 binary bits for storage. Moreover, if
the inputs are restricted to the set {-1, 1}, the neurons in the first hidden layer require
only sign adjustment for multiplication operations, and only integer addition. The
transfer function of these neurons, e.g. tanh, can be very accurately implemented by
using a lookup table with only 4 entries augmented by sign adjustments. The addition
and multiplication operations in the output layer neurons of a single-hidden-layer net
are not as simple as that for the hidden ones, but can be streamlined, keeping in mind
the small number of possible output levels of the hidden neurons. For classification
tasks, the transfer function of the output neurons can be implemented as a simple
threshold. These features of the integer-weight net (IWN) make it very attractive
for efficient hardware implementation. It should, however, be stressed here that these
benefits are valid only when the IWN has been trained, as the learning task still requires
full-precision arithmetic.

Discrete-weight nets are also attractive because the amount of information stored
in their weights can be quantified [1]. The CWN can store an infinite variety of in-
formation, whereas the discrete-weight nets have only a limited capability. Varying

191 Publications from This Thesis

the discretisation scheme shows how much complexity is required to get a reasonable
approximation in a given learning task. This can be a significant step towards under-
standing the fundamental relationship between approximation and memory.

The purpose of this paper is to explore the capabilities of discrete-weight nets
on a set of classification problems, which are generalisations of the conventional XOR
problem. It is shown that provided a suitable quantisation interval is chosen, a discrete-
weight net can be found which performs as well as a CWN, but that it may require
more hidden neurons than its continuous-weight counterpart.

The collection of learning heuristics used for the simulations in this paper is a modi-
fied version of the one described in [3]. The weight quantisation process is superimposed
on the vanilla back-propagation with momentum error minimisation procedure. This
weight quantisation process consists of two distinct mechanisms. The first mechanism
determines the integer that a given weight is closest to. It then gradually reduces the
difference of the weight with respect to that integer. The second mechanism acts as a
black-hole centred at an integer value. If a weight falls within the black-hole radius, its
value is forced to the centre-value of the black-hole. The weight quantisation rate and
the black-hole radius are computed before each learning epoch, and are exponentially
dependent upon the negative of the RMS error.

2. Approximating Continuous-Weight Perceptrons with IWNs

A perceptron with continuous weights has the ability of implementing an infinite va-
riety of hyperplanes in its input space. On the other hand, a perceptron having W
integer-weights in the range [— K, K], is limited to O(K") choices (see Figure 1). This
restriction is the reason for the lack of the affine group invariance in integer-weight per-
ceptrons. The addition of a hidden layer, however, is sufficient to restore this invariance.
All ten data sets shown in Figure 2 are linearly separable and therefore can be classified
correctly by a continuous-weight perceptron. IWNs with increasing number of hidden
neurons were used to classify these data sets and it was found that the RMS value of
the output error decreased logarithmically with the number of neurons (see Figure 3).
It should be noted here that integer-weight nets with zero and one hidden neuron have
different mapping abilities, which is contrary to the continuous-weight case. The IWN
with a single hidden neuron has a richer mapping capability as compared with the one
with no hidden neurons.

3. Approximating Continuous-Weight Multilayer Nets with IWNs

In the work reported here, mappings of the form f: R? — {—1,1}!, R being a closed
interval [—1, 1], were used for comparing the IWN and CWN decision surfaces for a set
of 10 classification problems (Figure 4) which, were used for numerous training runs on
2:h:1 networks, with and without skip-layer connections.

Problems D, D*, E, and E* are of the same complexity, as far as the minimum
number of required dichotomies is concerned. For all four problems, the CWN requires
two hidden neurons with skip-layer connections and four without (Table 1). For the
IWN, however, the numbers are a bit more variable, and larger. This is due to the
inability of the IWN to implement dichotomies at arbitrary angles and for arbitrarily
close training data points. It should, however, be pointed out that this inability can
always be compensated for by the addition of hidden neurons. In a way, this drawback
can be viewed as a beneficial feature of IWNs. This feature provides a finer control on

192 Publications from This Thesis

L
(Bias = 0) (Bias = +1) (Bias = +2) (Bias = +3) (Combined)

Figure 1 The set of decision boundaries of an integer [-3, 3] weight 2-input perceptron
with bias. Some of the possible 73 decision boundaries lie outside the {(-1, 1), (1, 1)}

square, and therefore are not shown.

& () (K) (L) ()
(N) (0) (P) Q) (R)

Figure 2 Linearly separable data sets with decision boundaries at gradually varying angles.

. 1&Q 0 J&P 0 K & O
) -2 -2
4 -4 -4
S 3 4 -6f 5 54 5 3 4
~ 0 L &N 0 M 0 R
K
g -2 -2 -2
N4 -4 -4
RS
-6 i 9 5 3 4 9 5 3 4

1 Hidzden negrons
Figure 3 IWN minimum RMS error as a function of the number of hidden neurons for the

data sets shown in Figure 2.

193 Publications from This Thesis

matching the network complexity with that of the learning task.

Problems D and E have the same number of dichotomies, but are different in terms
of the angles of the dichotomies. F requires angles in a certain narrow range, whereas
D can be implemented with a wider range of angles, and therefore is an easier learning
task. A similar comparison can be drawn with respect to E and E*, with the added
difficulty of smaller inter-point distances in E*.

A hexagon shaped training set was used to further study the effect of the angle of
the training data dichotomies on the learning ability of the IWNs. The hexagon data
set of Figure 5 was rotated around its centre in 5° steps, and i (i.e. 2:h:1 net with
skip-layer connections) IWNs were trained on it. The results of those training runs are
presented in Table 2. Only two data configurations, ones with rotations of 15° and 45°,
were learnable with one hidden neuron. These data configurations resulted in exactly
the same error surfaces except for a 90° rotation from the former to the latter. This,
once again, shows that IWNs find it difficult to draw dichotomies at certain angles,
favouring a discrete set of angles instead.

Almost all of the integer-weight training runs resulted in some repeated decision
surfaces. For example, all skip-layer training runs on problem C* resulted in exactly
the same decision surface. Similarly, all of the skip-layer runs for problem D resulted
in similar decision surfaces, differing only by a rotation of a multiple of 90° (see Figure
6 g-1). The repetition of surfaces suggests that the complexity of the network is exactly
matched with that of the target problem. Therefore, the problem solution, i.e. the
decision surface, can be represented in only one way by the network. The reason for
the repetition with extra rotation is certainly the 8-fold symmetry of D. Most of the
problems resulted in some duplicated decision surfaces for IWNs, whereas none of the
continuous-weight training runs resulted in any repetitions.

4. Error Surfaces

Another way of comparing discrete-weight nets and CWNs is via their error surfaces.
Discrete-weight error surfaces are just the low-resolution sampled versions of the CWN
error surfaces, as can be seen in Figure 9.

CWN error surfaces can be analysed to find out whether a network with a certain
weight-resolution will be able to properly represent a given input/output mapping.
If the CWN error surface contains sharp minima at points which are missed by the
low-resolution sampling, then the discrete-weight net will not be able to represent the
mapping with a reasonable accuracy. Modified versions of the XOR problem were used
as test problems to study this phenomenon. These modified versions were produced by
gradually bringing the four data points close to each other (see Figure 7). As the data
points are brought closer, the slope of the error surface in the vicinity of the global
error minimum becomes steeper. The minimum looks like the top of a funnel when the
points are far apart, as in Figure 7 XOR1, and looks more like the middle of a funnel
when the points are close by, as in XOR%. A 2T network with symmetric weights
(Figure 8) was used to find the depth of the global minima for a number of weight
resolutions. Symmetric weights were used to reduce the free parameters of the network
from seven to five. It is quite clear from Table 3 that, in the case of XOR%, the error
minimum has such a narrow collection region that the IWN can not see it because of
low-resolution weight sampling, and a network with a weight resolution of at least 0.125
is required to correctly classify all the data points.

194 Publications from This Thesis
© ® T}
(¢] j M &. (¢
(A) (B) (€) (D)
(A*) (B¥) (C*) (D*) (E%)

Figure 4 Training sets used for comparing the learning capabilities of IWNs and CWNs.
The thick lines are the examples of the minimum number of possible dichotomies. A*—E*

are slightly deformed versions of A-E with smaller inter-point distances.

Table 1 Comparison of the minimum number of hidden neurons required by CWNs and
IWNs for learning problems of increasing complexity. A training run was considered suc-

cessful when the output value was within 20% of the {-1, 1} targets

Minimum number of hidden neurons
with skip-layer connections | w/o skip-layer connections
Problem | Dichotomies CN WX CN TWN
A 0 0 - -
A* 1 0 0 - -
B 1 1 2 2
B* 2 1 1 2 2
C 1 1 3 3
C* 3 1 1 3 3
D 2 2 4 4
D* 4 2 3 4 4
E 2 4 4 4
E* 4 2 5 4 5

Figure 5 Hexagon training set with 0° rotation.

195 Publications from This Thesis

Table 2 Comparison of the minimum number of hidden neurons required by an IWN(with
skip-layer connections) for learning the hexagon data set as it was rotated by 5° steps
Rotation 0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 50° 55° 60°
Hidden neurons | 2 2 2 1 2 2 2 2 2 1 2 2 2

5. Conclusions

Decision and error surfacers were used to explore the discrete-weight approximation of
CWNs. Although most of the conclusions of this paper are based on integer-weight
results, they are equally valid for other levels of discretisation.

The CWN can store an infinite quantity of information, whereas the discrete-weight
net’s resolution is finite. The latter does, however, has the advantage of efficient hard-
ware implementation. Moreover, it provides an interesting way of quantifying informa-
tion stored in a network [1]. Changing the discretisation scheme of the weights of a
fixed-size network, or keeping a fixed discretisation scheme while changing the size of
the network, are alternative techniques for determining the amount of network com-
plexity required for approximating the response of a CWN to a specified tolerance.
These two competing techniques can be used to understand the fundamental relation-
ship between the approximation error and the storage capacity required to achieve that
error. In addition, the level of control available on the complexity of discrete-weight
nets can be exploited to one’s benefit. The network designer can select a network with
a complexity that matches more closely with the complexity of the learning task. This
will result in improved generalisation performance.

Acknowledgement: Khan’s work was supported by the Commonwealth Scholarship
Commission in the UK and the University of Engineering and Technology, Lahore,
Pakistan.

References

[1] R. W. Brause. The error-bound descriptional complexity of approximation net-
works. Neural Networks, 2(6):177-187, 1993.

[2] E. Fiesler, A. Choudry, and H. J. Caulfield. A weight discretization paradigm for
optical neural networks. In Proc. of the Int. Cong. on Opt. Sc. and Engg., pages
164-173, Bellingham, Washington, 1990. SPIE.

[3] A. H. Khan and E. L. Hines. Integer-weight neural nets. Electron. Lett., 30(15):
1237-1238, July 1994

[4] H. Yoo and R. L. Pimmel. Weight discretization in back-propagation neural network
classifiers. In C. H. Dagli et al., eds., Intel. Engg. Sys. through ANNs., pages 167
172. ASME Press, New York, 1991.

196 Publications from This Thesis

Figure 6 Decision surfaces after 6 consecutive training runs on problem D: 2:2:1 net with
double-precision weights (a-f); 2:2:1 net with integer weights (g-1).

o []
o ®
o e oe
® O 0
(J o
(J o
XOR1 XOR2 XOR; XOR+ XOR4

Figure 7 XORx training sets.

Wof fo

Woffh

Figure 8 Symmetric weight 2.T:1 XOR network.

197 Publications from This Thesis

Fire

I N R O B O R C R O

(-3) (-2) (-1) (0) (1) (2) (3)
Figure 9 Error surfaces showing the global minimum for XOR%. The 7 images on the top
are for integer weights and the rest are for a weight resolution of 0.125. wj, = 3. w;, = -3.
0, is plotted along the horizontal axis. 6, is plotted along the vertical axis. wy, is the
figure in the brackets.

Table 3 Global error minima (each of multiplicity 4) as a function of weight resolution.
The italicised figures indicate that one or more training vectors were misclassified at these
global minima

Weight resolution (wpin = —3, Wmaz = 3)
6 3 2 1.5 1 0.75 0.5 0.25 0.125
Number of required binary bits
1 2 2 3 3 4 4 5 6
Problem FErms

XOR1 0.879 0.875 0.501 0.097 0.210 0.097 0.097 0.097 0.097
XOR% 0.722 0.722 0.719 0.192 0.177 0.134 0.104 0.104 0.104
XOR% 0.875 0.875 0.212 0.148 0.212 0.148 0.148 0.139 0.139
XOR% 1.167 0.946 0.736 0.711 0.540 0.474 0.465 0.446 0.430
XOR% 1.088 0.991 0.977 0.958 0.787 0.859 0.787 0.787 0.784

Index

activation function, 3
affine, 28
bounded, 27
data-dependent, 9
hyperbolic tangent, 4, 18, 20, 35, 47,
82
linear region, 89, 107
logistic, 4, 6, 20, 31, 161
non-polynomial, 27
sigmoidal, 17, 25, 27, 84
superanalytic, 29, 30, 34, 84, 156, 157,
159
affine transform, 28, 154
invariance, 60, 62
algebra, 155
application
air bag, 7
commercial, 59
copper lasers, 7
forecasting diabetes, 104
fusion reactor, 6
handwritten numerals, 108
high speed machining, 121
meat classifier, 7
MONK’s benchmark, 101
approximation properties, 9
ARTMAP, 106

Baire’s theorem, 157
Bayesian
classifier, 106
statistics, 21
techniques, 9, 97, 121
biological
network, 7
plausibility, 7, 27
black-hole
function, 54, 55
mechanism, 51, 52, 59
radius, 51
bootstrap, 95

categorical variables, 11

classification, 6, 95, 98, 103, 106, 118, 119
definition, 6
outputs, 11

198

compacta, 27, 29, 84, 155

convergence, 13, 24
error backpropagation, 11, 31
in probability, 33
integer-weight learning, 47
on-line learning, 32, 33
pointwise, 160
rate, 32
with probability 1, 32

cost function, 11, 13, 25, 32, 33, 36, 96, 101,

106
cross-validation, 95

data
balanced set, 107
missing, 105
noisy, 102, 103, 105
pre-processing, 10
rotated, 67
scaling, 59
standardisation, 11, 107, 109
unseen, 92
decision boundaries
integer-weight perceptron, 63
multiplier-free perceptron, 83
decision surface, 62, 170
repeated, 68
dense, 29, 85, 155
uniformly, 29, 84, 155

effective sample size, 95
encoder/decoder task, 56
epoch, 12, 13, 50, 101
reinitialisation, 101
ergodic, 33
error
maximum acceptable, 50, 58, 89
measure, 11
minimum, 75
global, 13, 14, 33, 45, 50
local, 13, 33, 40
surface, 12, 62, 74
error backpropagation, 12, 43, 52
convergence, 31

feedforward network, 1, 5
approximation properties, 9

199

INDEX

functionality, 2
generalisation, 14
hardware, 16
history, 21
learning, 10, 11
feedforward networks
constrained weights, 18
forward pass, 79
function
activation, 3
analytic, 29, 156
Borel measurable, 9, 29
hyperbolic tangent, 4, 47
logistic, 4
separates points, 155
superanalytic, 29, 84
vanishes at no point, 155
weight discretisation, 46, 48, 53
function approximation, 6

generalisation, 92, 94
comparison, 120
definition, 14
empirical estimation, 94
methodology, 98
stacked, 95

good fit, 15

hardware, 1, 16, 19, 40, 116
analogue-digital hybrid, 18
D/A converter, 18
digital, 1
electronic

analogue, 36, 80
digital, 35, 79
multiplier, 20, 35
optical, 36, 80
hidden layer, 3

in-situ learning, 8

integer-weight learning, 46, 47, 54, 165
black-hole function, 54
black-hole mechanism, 51
comparison, 52
discretisation function, 53
discretisation rate, 47, 50
perturbation mechanism, 50
practical considerations, 49

integer-weight network
approximation capabilities, 39
noise immunity, 37, 103, 108

k-nearest neighbours, 106
Kronecker’s theorem, 85

Lo-norm, 102

Lo,-norm, 56, 102
Ly-norm, 12
learning, 8, 40, 121

batch, 12

Cascade-correlation, 10

discrete-weight, 42

epochs, 90

Hebbian, 17

in-situ, 8, 12, 36, 59, 81, 91, 120

integer-weight, 46, 47, 119, 165
convergence, 47

margin heuristic, 32

mixed methods, 13

multiplier-free, 88

on-line, 12, 14, 32

ontogenic, 10

optimal stopping, 96

parameters, 163

prerequisites, 10

steepest descent, 12

stochastic method, 13, 40, 45

weight discretisation, 46

learning procedure

Alopex, 101

backpropagation with quantisation, 44
Cascade-correlation, 45

chain rule perturbation, 44
combined search algorithm, 45
continuous-discrete learning, 43
definition, 11

error backpropagation, 12
Hebbian learning, 17
integer-weight, 46
multiplier-free, 88

simulated annealing, 13, 45
weight perturbation, 13, 43

learning rate, 58

boost, 101
diminishing, 32, 33
fixed, 32

least-squares measure, 12
limit point, 29
linear separability, 103

margin heuristic, 32
momentum, 18, 32, 52, 58
multiplier, 18-20, 120

digital, 35, 81

multiplier-free network, 79

existence theorem, 84
learning, 88
universal approximation, 82, 121

network

2-layer, 3

200

INDEX

biological, 7
complexity, 38, 66, 78
continuous-weight, 3
discrete-weight, 37, 61, 91, 118
feedforward, 1
fixed-size, 10, 78
integer-weight, 20, 35, 117
many layer, 6
multiplier-free, 20, 79, 80, 84, 118
optimal, 97
over-trained, 99
size, 91
storage efficiency, 112, 120
neuron, 3, 4
NP-complete, 9, 20, 40

Ockham’s razor, 97
offset, 3, 79
over-fit, 14, 15

perceptron, 6, 20, 62, 83
projection pursuit regression, 9

regularisation, 16

sampling with replacement, 95
sensitivity, 99

simulated annealing, 13, 33
skip-layer synapse, 64, 68
smoothing spline model, 106

span, 30, 159
specificity, 99
statistics

Bayesian, 21
EM algorithm, 107
logistic discriminant analysis, 106
main effects, 64
mixture representation, 106
neural networks, 8
projection pursuit regression, 9
regularisation, 96
ridge regression, 36
ridging
constrained, 37
penalised, 36, 96
smoothed, 37, 96
shrinkage, 36
stochastic pulse trains, 17
Stone-Weierstrass theorem, 27, 86, 155
strongly stationary, 33
supremum, 27
synapse, 3, 79
1-bit, 79
bipolar-binary, 82
discrete, 20
skip-layer, 64, 68

target value, 12
train-and-test, 94
training, see learning
triangle inequality, 26

under-fit, 14, 15

uniformly dense, 29

universal approximation, 9, 24
1-dimension, 29, 155
d-dimensions, 29, 155
definition, 9
integer-weight network, 39
multiplier-free network, 82, 121
simple example, 25

weight

2-bit, 42

3-bit, 35, 42, 117

4-bit, 16

8-bit, 17

12-bit, 18

16-bit, 16, 17

addition of noise, 96

adjustable, 16

analogue, 16

arbitrary precision, 27

binary, 38

bounded, 20, 28, 29, 39, 154, 156
to unit sphere, 30, 159
range [—3, 3], 35

continuous, 18

decay, 96, 97, 101, 164

depth, 19, 24, 38, 78, 118, 121

discrete, 16, 61, 121

discretisation rate, 47, 50

discretisation scheme, 41, 61, 78

effective, 94

elimination, 96

forced to zero, 18

guard bits, 42

initialisation, 11

integer, 35

medium resolution, 42

nearly discrete, 20, 51

non-uniformly discretised, 42

non-volatile, 16, 18

on-chip, 16

optimal, 9

powers-of-two, 38, 41, 81

rounding, 51

sharing, 96

superfluous, 93

symmetric, 75

ternary, 38

volatile, 18

zero-valued, 36, 93, 98, 103, 107, 111

